Dans cette note, nous proposons un estimateur non paramétrique spatial de la fonction de régression
In this note, we propose a nonparametric spatial estimator of the regression function
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_635_0, author = {Dabo-Niang, Sophie and Ternynck, Camille and Yao, Anne-Francoise}, title = {A new spatial regression estimator in the multivariate context}, journal = {Comptes Rendus. Math\'ematique}, pages = {635--639}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.004}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.crma.2015.04.004/} }
TY - JOUR AU - Dabo-Niang, Sophie AU - Ternynck, Camille AU - Yao, Anne-Francoise TI - A new spatial regression estimator in the multivariate context JO - Comptes Rendus. Mathématique PY - 2015 SP - 635 EP - 639 VL - 353 IS - 7 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2015.04.004/ DO - 10.1016/j.crma.2015.04.004 LA - en ID - CRMATH_2015__353_7_635_0 ER -
%0 Journal Article %A Dabo-Niang, Sophie %A Ternynck, Camille %A Yao, Anne-Francoise %T A new spatial regression estimator in the multivariate context %J Comptes Rendus. Mathématique %D 2015 %P 635-639 %V 353 %N 7 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2015.04.004/ %R 10.1016/j.crma.2015.04.004 %G en %F CRMATH_2015__353_7_635_0
Dabo-Niang, Sophie; Ternynck, Camille; Yao, Anne-Francoise. A new spatial regression estimator in the multivariate context. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 635-639. doi : 10.1016/j.crma.2015.04.004. https://www.numdam.org/articles/10.1016/j.crma.2015.04.004/
[1] Nonparametric spatial prediction, Stat. Inference Stoch. Process., Volume 7 (2004) no. 3, pp. 327-349
[2] Kernel density estimation for random fields (density estimation for random fields), Stat. Probab. Lett., Volume 36 (1997) no. 2, pp. 115-125
[3] On the sphere problem, Rev. Mat. Iberoam., Volume 11 (1995) no. 2, pp. 417-430
[4] A kernel spatial density estimation allowing for the analysis of spatial clustering: application to Monsoon Asia Drought Atlas data, Stoch. Environ. Res. Risk Assess., Volume 28 (2014), pp. 2075-2099
[5] S. Dabo-Niang, C. Ternynck, A.-F. Yao, Nonparametric prediction of spatial multivariate data, 2015, preprint.
[6] Kernel regression estimation for continuous spatial processes, Math. Methods Stat., Volume 16 (2007) no. 4, pp. 298-317
[7] Nonparametric regression estimation for random fields in a fixed-design, Stat. Inference Stoch. Process., Volume 10 (2007) no. 1, pp. 29-47
[8] Asymptotic normality of the Parzen–Rosenblatt density estimator for strongly mixing random fields, Stat. Inference Stoch. Process., Volume 14 (2011) no. 1, pp. 73-84
[9] Asymptotic normality of kernel estimates in a regression model for random fields, J. Nonparametr. Stat., Volume 22 (2010) no. 8, pp. 955-971
[10] Moment inequalities for spatial processes, Stat. Probab. Lett., Volume 78 (2008) no. 6, pp. 687-697
[11] Nonparametric spatial prediction under stochastic sampling design, J. Nonparametr. Stat., Volume 22 (2010) no. 3, pp. 363-377
[12] Convergence of block spins defined by a random field, J. Stat. Phys., Volume 22 (1980) no. 6, pp. 673-684
[13] Stationary Sequences and Random Fields, Birkhäuser, Boston, 1985
[14] On the rates in the central limit theorem for weakly dependent random fields, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 64 (1983) no. 4, pp. 445-456
[15] Spatial regression estimation for functional data with spatial dependency, J. Soc. Fr. Stat., Volume 155 (2014) no. 2, pp. 138-160
[16] Prediction for spatio-temporal models with autoregression in errors, J. Nonparametr. Stat., Volume 24 (2012) no. 1, pp. 217-244
Cité par Sources :