Soit un flot , faiblement mélangeant, sur une variété riemannienne M. Soit Λ un ensemble basique pour . On considère l'opérateur de Ruelle de transfert , où f et g sont des fonctions hölderiennes à valeurs réelles sur Λ, τ est la fonction roof et sont des paramètres complexes. On suppose que satisfait quelques conditions et, pour des fonctions arbitraires, on prouve des estimations pour les itérations de cet opérateur de Ruelle quand avec des constantes ( si sont des fonctions lipschitziennes) qui sont analogues aux estimations des opérateurs avec un paramètre complexe (cf. [2,11,12]). En appliquant ces estimations, on obtient un prolongement sans zéros de la fonction zêta pour et suffisamment petit avec un pôle simple en . Nous proposons aussi deux autres applications : la première concerne la formule de sommation de Hannay–Ozorio de Almeida, tandis que la seconde concerne l'asymptotique de la fonction de comptage des périodes primitives du flot calculées avec des poids.
For a weak-mixing Axiom-A flow on a Riemannian manifold M and a basic set Λ for , we consider the Ruelle transfer operator , where f and g are real-valued Hölder functions on Λ, τ is the roof function and are complex parameters. Under some assumptions about for arbitrary Hölder , we establish estimates for the iterations of this Ruelle operator when for some constants , ( for Lipschitz ), in the spirit of the estimates for operators with one complex parameter (see [2,11,12]). Applying these estimates, we obtain a non-zero analytic extension of the zeta function for and small enough with a simple pole at . Two other applications are considered as well: the first concerns the Hannay–Ozorio de Almeida sum formula, while the second deals with the asymptotic of the counting function for weighted primitive periods of the flow .
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_595_0, author = {Petkov, Vesselin and Stoyanov, Luchezar}, title = {Ruelle operators with two complex parameters and applications}, journal = {Comptes Rendus. Math\'ematique}, pages = {595--599}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.005}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.005/} }
TY - JOUR AU - Petkov, Vesselin AU - Stoyanov, Luchezar TI - Ruelle operators with two complex parameters and applications JO - Comptes Rendus. Mathématique PY - 2015 SP - 595 EP - 599 VL - 353 IS - 7 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.005/ DO - 10.1016/j.crma.2015.04.005 LA - en ID - CRMATH_2015__353_7_595_0 ER -
%0 Journal Article %A Petkov, Vesselin %A Stoyanov, Luchezar %T Ruelle operators with two complex parameters and applications %J Comptes Rendus. Mathématique %D 2015 %P 595-599 %V 353 %N 7 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.04.005/ %R 10.1016/j.crma.2015.04.005 %G en %F CRMATH_2015__353_7_595_0
Petkov, Vesselin; Stoyanov, Luchezar. Ruelle operators with two complex parameters and applications. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 595-599. doi : 10.1016/j.crma.2015.04.005. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.005/
[1] The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975), pp. 181-202
[2] On decay of correlations in Anosov flows, Ann. Math., Volume 147 (1998), pp. 357-390
[3] Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, UK, 1995
[4] Expanding maps on Cantor sets and analytic continuation of zeta function, Ann. Sci. Éc. Norm. Super., Volume 38 (2005), pp. 116-153
[5] Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque (1990), pp. 187-188
[6] Sharp large deviations for some hyperbolic systems, Ergod. Theory Dyn. Syst., Volume 35 (2015) no. 1, pp. 249-273
[7] Spectral estimates for Ruelle transfer operators with two parameters and applications, 2014 (Preprint) | arXiv
[8] M. Pollicott, A note on exponential mixing for Gibbs measures and counting weighted periodic orbits for geodesic flows, Preprint, 2014.
[9] Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math., Volume 120 (1998), pp. 1019-1042
[10] On the Hannay–Ozorio de Almeida sum formula, Dynamics, Games and Science, II, Springer Proc. Math., vol. 2, Springer, Heidelberg, Germany, 2011, pp. 575-590
[11] Spectra of Ruelle transfer operators for Axiom A flows on basic sets, Nonlinearity, Volume 24 (2011), pp. 1089-1120
[12] Pinching conditions, linearization and regularity of Axiom A flows, Discrete Contin. Dyn. Syst. A, Volume 33 (2013), pp. 391-412
[13] Large deviations for Anosov flows, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996), pp. 445-484
[14] Ruelle's lemma and Ruelle zeta functions, Asymptot. Anal., Volume 80 (2012), pp. 223-236
Cité par Sources :