Dans le cône du futur de l'espace de Minkowski, la pseudo-norme associée à la métrique lorentzienne satisfait une inégalité du type de Hlawka :
We show that in the future cone of the Minkowski space, the pseudo-norm satisfies a Hlawka-type inequality:
Accepté le :
Publié le :
@article{CRMATH_2015__353_7_629_0, author = {Serre, Denis}, title = {The reverse {Hlawka} inequality in a {Minkowski} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {629--633}, publisher = {Elsevier}, volume = {353}, number = {7}, year = {2015}, doi = {10.1016/j.crma.2015.04.008}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.008/} }
TY - JOUR AU - Serre, Denis TI - The reverse Hlawka inequality in a Minkowski space JO - Comptes Rendus. Mathématique PY - 2015 SP - 629 EP - 633 VL - 353 IS - 7 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.008/ DO - 10.1016/j.crma.2015.04.008 LA - en ID - CRMATH_2015__353_7_629_0 ER -
Serre, Denis. The reverse Hlawka inequality in a Minkowski space. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 629-633. doi : 10.1016/j.crma.2015.04.008. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.008/
[1] Geometry of Cuts and Metrics, Algorithms Comb., vol. 15, Springer-Verlag, 1997
[2] Linear hyperbolic partial differential equations with constant coefficients, Acta Math., Volume 85 (1951), pp. 1-62 (An inequality for hyperbolic polynomials: J. Math. Mech., 8, 1959, pp. 957-965)
[3] Eine Ungleichung für Vektorlängen, Math. Z., Volume 48 (1942), pp. 268-274
[4] On two geometric inequalities, Ann. Math. Sil., Volume 9 (1995), pp. 137-140
[5] A support characterization of zonotopes, Mathematika, Volume 25 (1978), pp. 13-16
Cité par Sources :