En vue d'applications en mécanique des fluides, on démontre qu'une mesure positive de Radon à support compact appartient à l'espace négatif de Sobolev à condition que la fonction soit hölderienne. En passant, on obtient un plongement d'espace des fonctions croissantes hölderiennes sur dans l'espace de Sobolev fractionnaire . On discute des généralisations et des applications numériques.
Motivated by applications in fluid dynamics, we show elementarily that a nonnegative compactly supported Radon measure μ belongs to the negative Sobolev space provided that function is Hölder continuous. In passing we obtain embedding of the space of nondecreasing Hölder continuous functions on into the fractional Sobolev space . We comment on possible generalizations and numerical applications.
Accepté le :
Publié le :
@article{CRMATH_2015__353_6_529_0, author = {Jamr\'oz, Grzegorz}, title = {Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$}, journal = {Comptes Rendus. Math\'ematique}, pages = {529--534}, publisher = {Elsevier}, volume = {353}, number = {6}, year = {2015}, doi = {10.1016/j.crma.2015.04.010}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.010/} }
TY - JOUR AU - Jamróz, Grzegorz TI - Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$ JO - Comptes Rendus. Mathématique PY - 2015 SP - 529 EP - 534 VL - 353 IS - 6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.010/ DO - 10.1016/j.crma.2015.04.010 LA - en ID - CRMATH_2015__353_6_529_0 ER -
%0 Journal Article %A Jamróz, Grzegorz %T Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$ %J Comptes Rendus. Mathématique %D 2015 %P 529-534 %V 353 %N 6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.04.010/ %R 10.1016/j.crma.2015.04.010 %G en %F CRMATH_2015__353_6_529_0
Jamróz, Grzegorz. Nonnegative measures belonging to $ {H}^{-1}({\mathbb{R}}^{2})$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 6, pp. 529-534. doi : 10.1016/j.crma.2015.04.010. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.010/
[1] Sobolev Spaces, Academic Press, 2003
[2] The Lebesgue–Stieltjes Integral. A Practical Introduction, Springer-Verlag, New York, 2000
[3] Weak solutions of 2-D Euler incompressible Euler equations, Nonlinear Anal. TMA, Volume 23 (1994), pp. 629-638
[4] A theorem on measures in dimension 2 and applications to vortex sheets, J. Funct. Anal., Volume 266 (2014), pp. 6780-6795
[5] Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., Volume 4 (1991), pp. 553-586
[6] Concentrations in regularizations for 2-D incompressible flow, Commun. Pure Appl. Math., Volume 40 (1987) no. 3, pp. 301-345
[7] Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, USA, 1992
[8] Integrals associated with the Cantor staircase, St. Petersburg Math. J., Volume 15 (2006) no. 3, pp. 449-468
[9] Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, Commun. Pure Appl. Math., Volume 48 (1995) no. 6, pp. 611-628
[10] Numerical evidence of nonuniqueness in the evolution of vortex sheets, ESAIM: Math. Model. Numer. Anal., Volume 40 (2006) no. 2, pp. 225-237
[11] Approximate solutions of the incompressible Euler equations with no concentrations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 3, pp. 371-412
[12] Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 921-939
[13] The point-vortex method for periodic weak solutions of the 2D Euler equations, Commun. Pure Appl. Math., Volume 49 (1996), pp. 911-965
[14] On a new scale of regularity spaces with applications to Euler's equations, Nonlinearity, Volume 14 (2001) no. 3, pp. 513-532
[15] An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, vol. 3, Springer/UMI, Berlin/Bologna, 2007
Cité par Sources :