Numerical analysis
A mixed DG method for folded Naghdi's shell in Cartesian coordinates
[Une méthode de Galerkin discontinue mixte pour une coque de Naghdi pliée en coordonnées cartésiennes]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 653-658.

Dans cette Note, nous proposons une méthode mixte pour résoudre les équations du modèle de Naghdi de coques linéairement élastiques. Les inconnues du problème sont le déplacement des points de la surface moyenne, le vecteur de rotation de la normale à la surface moyenne et un multiplicateur de Lagrange introduit pour forcer le caractère tangentiel de la rotation. Nous démontrons le caractère bien posé du problème continu et du problème discret.

In this Note, a mixed formulation is proposed to solve Naghdi's equations for a thin linearly elastic shell. The unknowns of the problem are the displacement of the points of the middle surface, the rotation field of the normal vector to the middle surface of the shell and a Lagrange multiplier that is introduced in order to enforce the tangency requirement on the rotation. We prove the well posedness of the continuous and the discrete problems.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.04.016
Nicaise, Serge 1 ; Merabet, Ismail 2

1 LAMAV, Université de Valenciennes, France
2 LAMA, Université Kasdi-Merbah, Ouargla, Algeria
@article{CRMATH_2015__353_7_653_0,
     author = {Nicaise, Serge and Merabet, Ismail},
     title = {A mixed {DG} method for folded {Naghdi's} shell in {Cartesian} coordinates},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {653--658},
     publisher = {Elsevier},
     volume = {353},
     number = {7},
     year = {2015},
     doi = {10.1016/j.crma.2015.04.016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.016/}
}
TY  - JOUR
AU  - Nicaise, Serge
AU  - Merabet, Ismail
TI  - A mixed DG method for folded Naghdi's shell in Cartesian coordinates
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 653
EP  - 658
VL  - 353
IS  - 7
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.016/
DO  - 10.1016/j.crma.2015.04.016
LA  - en
ID  - CRMATH_2015__353_7_653_0
ER  - 
%0 Journal Article
%A Nicaise, Serge
%A Merabet, Ismail
%T A mixed DG method for folded Naghdi's shell in Cartesian coordinates
%J Comptes Rendus. Mathématique
%D 2015
%P 653-658
%V 353
%N 7
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.04.016/
%R 10.1016/j.crma.2015.04.016
%G en
%F CRMATH_2015__353_7_653_0
Nicaise, Serge; Merabet, Ismail. A mixed DG method for folded Naghdi's shell in Cartesian coordinates. Comptes Rendus. Mathématique, Tome 353 (2015) no. 7, pp. 653-658. doi : 10.1016/j.crma.2015.04.016. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.016/

[1] Bernardi, C.; Blouza, A.; Hecht, F.; Le Dret, H. A posteriori analysis of finite element discretizations of a Naghdi shell model, IMA J. Numer. Anal., Volume 33 (2013), pp. 190-211

[2] Blouza, A. Existence et unicité pour le modèle du Naghdi pour une coque peu régulière, C. R. Acad. Sci. Paris, Ser. I, Volume 324 (1997), pp. 839-844

[3] Blouza, A.; Le Dret, H. Nagdhi's shell model: existence, uniqueness and continuous dependence on the middle surface, J. Elasticity, Volume 64 (2001), pp. 199-216

[4] Blouza, A.; Hecht, F.; Le Dret, H. Two finite element approximations of Naghdi's shell model in Cartesian coordinates, SIAM J. Numer. Anal., Volume 44 (2006), pp. 636-654

[5] Ciarlet, P.G. Mathematical Elasticity, Volume III: Theory of Shells, Elsevier, Amsterdam, 2005

[6] Girault, V.; Raviart, P.-A. Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986

[7] Naghdi, P.M. Foundations of elastic shell theory, Progress in Solid Mechanics, vol. IV, North-Holland, Amsterdam, 1963, pp. 1-90

[8] Nicaise, S.; Merabet, I. Error analysis of a mixed DG method for folded Naghdi's shell in Cartesian coordinates, C. R. Acad. Sci. Paris, Ser. I, Volume 353 (2015)

Cité par Sources :