Nous démontrons un théorème limite central pour les sommes de Riesz–Raikov complexes. En application de nos méthodes, nous établissons aussi des résultats de discrépance pour les progressions géométriques complexes.
For complex Riesz–Raikov sums, the central limit theorem is proved. As a byproduct, metric discrepancy results are proved for complex geometric progressions.
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_749_0, author = {Fukuyama, Katusi and Kuri, Noriyuki}, title = {The central limit theorem for complex {Riesz{\textendash}Raikov} sums}, journal = {Comptes Rendus. Math\'ematique}, pages = {749--753}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.04.020}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.020/} }
TY - JOUR AU - Fukuyama, Katusi AU - Kuri, Noriyuki TI - The central limit theorem for complex Riesz–Raikov sums JO - Comptes Rendus. Mathématique PY - 2015 SP - 749 EP - 753 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.020/ DO - 10.1016/j.crma.2015.04.020 LA - en ID - CRMATH_2015__353_8_749_0 ER -
%0 Journal Article %A Fukuyama, Katusi %A Kuri, Noriyuki %T The central limit theorem for complex Riesz–Raikov sums %J Comptes Rendus. Mathématique %D 2015 %P 749-753 %V 353 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.04.020/ %R 10.1016/j.crma.2015.04.020 %G en %F CRMATH_2015__353_8_749_0
Fukuyama, Katusi; Kuri, Noriyuki. The central limit theorem for complex Riesz–Raikov sums. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 749-753. doi : 10.1016/j.crma.2015.04.020. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.020/
[1] On the law of the iterated logarithm for the discrepancy of lacunary sequences, Trans. Amer. Math. Soc., Volume 362 (2010), pp. 5967-5982
[2] On the asymptotic behaviour of . I, II, Z. Wahrsch. verv. Geb., Volume 34 (1976), pp. 319-345 (pp. 347–365)
[3] Central limit theorem for stationary products of toral automorphisms, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 1597-1626
[4] The central limit theorem for Riesz–Raikov sums, Probab. Theory Relat. Fields, Volume 100 (1994), pp. 57-75
[5] The law of the iterated logarithm for discrepancies of , Acta Math. Hung., Volume 118 (2008), pp. 155-170
[6] A central limit theorem and a metric discrepancy result for sequence with bounded gaps, Dependence in Probability, Analysis and Number Theory, Kendrick Press, Heber City, UT, USA, 2010, pp. 233-246
[7] Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, vol. B29, 2012, pp. 45-88
[8] On the distribution of values of sums of type , Ann. Math., Volume 47 (1946), pp. 33-49
[9] Remark to a paper of Gaposhkin, Acta Sci. Math. (Szeged), Volume 33 (1972), pp. 237-241
[10] Some Applications of Higher Semi-Invariants to the Theory of Stationary Random Processes, Izdat. Nauka, Moscow, 1964 (67 p)
[11] Limit theorems for multivariate lacunary systems, 2014 (preprint) | arXiv
[12] Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales, Probab. Theory Relat. Fields, Volume 88 (1991), pp. 381-404
[13] On the convergence properties of weakly multiplicative systems, Acta Sci. Math. Szeged, Volume 38 (1976), pp. 127-144
[14] Le théorème limite central pour des sommes de Riesz–Raikov, Probab. Theory Relat. Fields, Volume 93 (1992), pp. 407-438
[15] A functional law of the iterated logarithm for empirical distribution functions of weakly dependent random variables, Ann. Probab., Volume 5 (1977), pp. 319-350
[16] Some applications of multidimensional integration by parts, Ann. Pol. Math., Volume 21 (1968), pp. 85-96
Cité par Sources :