Combinatorics/Geometry
The Heesch number for multiple prototiles is unbounded
[Le nombre de Heesch pour plusieurs proto-pavés est non borné]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 665-669.

Dans cette note, on prouve que, pour tous entiers k3 et n1, il existe un proto-ensemble qui possède k proto-pavés et dont le nombre de Heesch est égal à n. Cela réfute une conjecture de Grünbaum et Shephard.

In this paper we show that, for all integers k3 and n1, there exists a protoset consisting of k prototiles, whose Heesch number is n. This disproves a conjecture by Grünbaum and Shephard.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.05.002
Bašić, Bojan 1

1 Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
@article{CRMATH_2015__353_8_665_0,
     author = {Ba\v{s}i\'c, Bojan},
     title = {The {Heesch} number for multiple prototiles is unbounded},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {665--669},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.05.002},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/}
}
TY  - JOUR
AU  - Bašić, Bojan
TI  - The Heesch number for multiple prototiles is unbounded
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 665
EP  - 669
VL  - 353
IS  - 8
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/
DO  - 10.1016/j.crma.2015.05.002
LA  - en
ID  - CRMATH_2015__353_8_665_0
ER  - 
%0 Journal Article
%A Bašić, Bojan
%T The Heesch number for multiple prototiles is unbounded
%J Comptes Rendus. Mathématique
%D 2015
%P 665-669
%V 353
%N 8
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/
%R 10.1016/j.crma.2015.05.002
%G en
%F CRMATH_2015__353_8_665_0
Bašić, Bojan. The Heesch number for multiple prototiles is unbounded. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 665-669. doi : 10.1016/j.crma.2015.05.002. http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/

[1] Adleman, L.; Kari, L.; Kari, J.; Reishus, D. On the decidability of self-assembly of infinite ribbons, FOCS'02 (2002), pp. 530-537

[2] Ardila, F.; Stanley, R.P. Tilings, Math. Intell., Volume 32 (2010), pp. 32-43

[3] Fontaine, A. An infinite number of plane figures with Heesch number two, J. Comb. Theory, Ser. A, Volume 57 (1991), pp. 151-156

[4] C. Goodman-Strauss, Open questions in tiling, unpublished.

[5] Grünbaum, B.; Shephard, G.C. Tilings and Patterns, W.H. Freeman and Company, New York, 1987

[6] Heesch, H. Reguläres Parkettierungsproblem, Westdeutscher Verlag, Cologne, 1968

[7] Kaplan, C.S. Introductory Tiling Theory for Computer Graphics, Morgan & Claypool Publishers, 2009

[8] Lietzmann, W. Lustiges und Merkwürdiges von Zahlen und Formen, Hirt, Breslau, 1928

[9] Mann, C. Heesch's problem and other tiling problems, University of Arkansas, 2001 (PhD thesis)

[10] Mann, C. Heesch's tiling problem, Am. Math. Mon., Volume 111 (2004), pp. 509-517

[11] Senechal, M. Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1995

[12] Stein, S.K.; Szabó, S. Algebra and Tiling: Homomorphisms in the Service of Geometry, Mathematical Association of America, Washington, DC, 1994

[13] Tarasov, A.S. On the Heesch number for the Lobachevskiĭ plane, Mat. Zametki, Volume 88 (2010), pp. 97-104 (Russian); English translation in Math. Notes, 88, 2010, pp. 97-102

[14] Thurston, W.P. Groups, tilings and finite state automata, Minneapolis, MN, USA (1989)

Cité par Sources :