Dans cette note, on prouve que, pour tous entiers et , il existe un proto-ensemble qui possède k proto-pavés et dont le nombre de Heesch est égal à n. Cela réfute une conjecture de Grünbaum et Shephard.
In this paper we show that, for all integers and , there exists a protoset consisting of k prototiles, whose Heesch number is n. This disproves a conjecture by Grünbaum and Shephard.
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_665_0, author = {Ba\v{s}i\'c, Bojan}, title = {The {Heesch} number for multiple prototiles is unbounded}, journal = {Comptes Rendus. Math\'ematique}, pages = {665--669}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.05.002}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/} }
TY - JOUR AU - Bašić, Bojan TI - The Heesch number for multiple prototiles is unbounded JO - Comptes Rendus. Mathématique PY - 2015 SP - 665 EP - 669 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/ DO - 10.1016/j.crma.2015.05.002 LA - en ID - CRMATH_2015__353_8_665_0 ER -
Bašić, Bojan. The Heesch number for multiple prototiles is unbounded. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 665-669. doi : 10.1016/j.crma.2015.05.002. http://archive.numdam.org/articles/10.1016/j.crma.2015.05.002/
[1] On the decidability of self-assembly of infinite ribbons, FOCS'02 (2002), pp. 530-537
[2] Tilings, Math. Intell., Volume 32 (2010), pp. 32-43
[3] An infinite number of plane figures with Heesch number two, J. Comb. Theory, Ser. A, Volume 57 (1991), pp. 151-156
[4] C. Goodman-Strauss, Open questions in tiling, unpublished.
[5] Tilings and Patterns, W.H. Freeman and Company, New York, 1987
[6] Reguläres Parkettierungsproblem, Westdeutscher Verlag, Cologne, 1968
[7] Introductory Tiling Theory for Computer Graphics, Morgan & Claypool Publishers, 2009
[8] Lustiges und Merkwürdiges von Zahlen und Formen, Hirt, Breslau, 1928
[9] Heesch's problem and other tiling problems, University of Arkansas, 2001 (PhD thesis)
[10] Heesch's tiling problem, Am. Math. Mon., Volume 111 (2004), pp. 509-517
[11] Quasicrystals and Geometry, Cambridge University Press, Cambridge, 1995
[12] Algebra and Tiling: Homomorphisms in the Service of Geometry, Mathematical Association of America, Washington, DC, 1994
[13] On the Heesch number for the Lobachevskiĭ plane, Mat. Zametki, Volume 88 (2010), pp. 97-104 (Russian); English translation in Math. Notes, 88, 2010, pp. 97-102
[14] Groups, tilings and finite state automata, Minneapolis, MN, USA (1989)
Cité par Sources :