@article{ASENS_2000_4_33_1_33_0, author = {Anantharaman, Nalini}, title = {Precise counting results for closed orbits of {Anosov} flows}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {33--56}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {1}, year = {2000}, doi = {10.1016/s0012-9593(00)00102-6}, mrnumber = {2002c:37048}, zbl = {0992.37026}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(00)00102-6/} }
TY - JOUR AU - Anantharaman, Nalini TI - Precise counting results for closed orbits of Anosov flows JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 33 EP - 56 VL - 33 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(00)00102-6/ DO - 10.1016/s0012-9593(00)00102-6 LA - en ID - ASENS_2000_4_33_1_33_0 ER -
%0 Journal Article %A Anantharaman, Nalini %T Precise counting results for closed orbits of Anosov flows %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 33-56 %V 33 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(00)00102-6/ %R 10.1016/s0012-9593(00)00102-6 %G en %F ASENS_2000_4_33_1_33_0
Anantharaman, Nalini. Precise counting results for closed orbits of Anosov flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 1, pp. 33-56. doi : 10.1016/s0012-9593(00)00102-6. http://archive.numdam.org/articles/10.1016/s0012-9593(00)00102-6/
[1] Homology of closed geodesics in a negatively curved manifold, J. Differential Geom. 26 (1987) 81-99. | MR | Zbl
and ,[2] Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Stekl. Inst. of Math. 90 (1969). | MR | Zbl
,[3] Minimal geodesics, Ergodic Theory Dynamical Systems 10 (1989) 263-286. | MR | Zbl
,[4] Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic Theory Dynamical Systems 18 (1998) 17-39. | MR | Zbl
and ,[5] Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973) 429-460. | MR | Zbl
,[6] Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (to appear). | Zbl
,[7] Asymptotic Expansions, Cambridge University Press, 1965. | MR | Zbl
,[8] On decay of correlations in Anosov flows, Ann. of Math. (to appear). | Zbl
,[9] Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynamical Systems 14 (1994) 645-666. | MR | Zbl
,[10] Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen (I), Math. Ann. 138 (1959) 1-26 ; (II), Math. Ann. 142 (1961) 385-398 ; (III), Math. Ann. 143 (1961) 463-464. | MR | Zbl
,[11] The Analysis of Partial Differential Operators, A series of comprehensive studies in mathematics, Vol. 256, Springer, Berlin, 1983. | MR | Zbl
,[12] Homology and closed geodesics in a compact Riemann surface, Amer. J. Math. 110 (1988) 145-156. | MR | Zbl
and ,[13] Closed orbits in homology classes, Publ. Math. IHES 71 (1990) 5-32. | Numdam | MR | Zbl
and ,[14] Large deviations, averaging and periodic orbits of dynamical systems, Comm. Math. Phys. 162 (1994) 33-46. | MR | Zbl
,[15] Distribution of periodic orbits of symbolic and Axiom A flows, Adv. Appl. Math. 8 (1987) 154-193. | MR | Zbl
,[16] Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989) 795-821. | MR | Zbl
,[17] Unique ergodicity of some flows related to Axiom A diffeomorphisms, Israel J. Math. 21 (1975) 111-132. | MR | Zbl
,[18] Applications of ergodic theory for the investigation of manifolds of negative curvature, Funct. Anal. Appl. 3 (1969) 335-336. | MR | Zbl
,[19] Zeta functions and the periodic orbit structure of hyperbolics dynamics, Astrisque 187-188 (1990). | Numdam | MR | Zbl
and ,[20] Geodesics in homology classes, Duke Math. J. 55 (1987), 287-297. | MR | Zbl
and ,[21] Homology and closed geodesics in a compact negatively curved surface, Amer. J. Math. 113 (1991) 379-385. | MR | Zbl
,[22] Error terms for growth functions on negatively curved surfaces, Amer. J. Math. (to appear).
and ,[23] Asymptotic expansions for closed orbits in homology classes, Preprint.
and ,[24] Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math. 15 (1973) 92-114. | MR | Zbl
,[25] Convex Analysis, Princeton University Press, 1970. | MR | Zbl
,[26] An extension of the theory of Fredholm determinants, Publ. Math. IHES 72 (1990) 175-193. | Numdam | MR | Zbl
,[27] Asymptotic cycles, Ann. of Math. 66 (1957) 270-284. | MR | Zbl
,[28] Prime orbits theorems with multi-dimensional constraints for Axiom A flows, Mh. Math. 114 (1992) 261-304. | MR | Zbl
,[29] Closed orbits in homology classes for Anosov flows, Ergodic Theory Dynamical Systems 13 (1993) 387-408. | MR | Zbl
,Cité par Sources :