@article{ASENS_2000_4_33_2_275_0, author = {Lott, John and Shen, Zhongmin}, title = {Manifolds with quadratic curvature decay and slow volume growth}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {275--290}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {2}, year = {2000}, doi = {10.1016/s0012-9593(00)00110-5}, mrnumber = {2002e:53049}, zbl = {0996.53026}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(00)00110-5/} }
TY - JOUR AU - Lott, John AU - Shen, Zhongmin TI - Manifolds with quadratic curvature decay and slow volume growth JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 275 EP - 290 VL - 33 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(00)00110-5/ DO - 10.1016/s0012-9593(00)00110-5 LA - en ID - ASENS_2000_4_33_2_275_0 ER -
%0 Journal Article %A Lott, John %A Shen, Zhongmin %T Manifolds with quadratic curvature decay and slow volume growth %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 275-290 %V 33 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(00)00110-5/ %R 10.1016/s0012-9593(00)00110-5 %G en %F ASENS_2000_4_33_2_275_0
Lott, John; Shen, Zhongmin. Manifolds with quadratic curvature decay and slow volume growth. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 2, pp. 275-290. doi : 10.1016/s0012-9593(00)00110-5. http://archive.numdam.org/articles/10.1016/s0012-9593(00)00110-5/
[1] Lower curvature bounds, Toponogov's theorem and bounded topology I, Ann. Sci. Ec. Norm. Sup. 18 (1985) 651-670. | Numdam | MR | Zbl
,[2] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71-158. | MR | Zbl
,[3] Critical points of distance functions and applications to geometry, in : Geometric Topology : Recent Developments, Lecture Notes in Math., Vol. 1504, Springer, New York, 1991, pp. 1-38. | MR | Zbl
,[4] On the characteristic numbers of complete manifolds of bounded curvature and finite volume, in : Differential Geometry and Complex Analysis, Springer, Berlin, 1985, pp. 115-154. | MR | Zbl
, ,[5] Collapsing Riemannian manifolds while keeping their curvature bounded I, J. Differential Geom. 23 (1986) 309-346. | MR | Zbl
, ,[6] Chopping Riemannian manifolds, in : Differential Geometry, Pitman Monographs Surveys Pure Appl. Math., Vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85-94. | MR | Zbl
, ,[7] Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15-53. | MR | Zbl
, , ,[8] Complete metrics of bounded curvature on noncompact manifolds, Arch. Math. 31 (1978) 89-95. | MR | Zbl
,[9] Riemannian manifolds of faster-than-quadratic curvature decay, Internat. Math. Res. Notices 9 (1994) 363-377. | MR | Zbl
, , ,[10] Volume and bounded cohomology, Publ. Math. IHES 56 (1982) 5-99. | Numdam | MR | Zbl
,[11] Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997) 1399-1404. | MR | Zbl
, ,[12] The Gromov volume of links, Invent. Math. 64 (1981) 445-454. | MR | Zbl
,Cité par Sources :