Rigidity of Furstenberg entropy for semisimple Lie group actions
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 321-343.
@article{ASENS_2000_4_33_3_321_0,
     author = {Nevo, Amos and Zimmer, Robert J.},
     title = {Rigidity of {Furstenberg} entropy for semisimple {Lie} group actions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {321--343},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {3},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00113-0},
     mrnumber = {2001k:22009},
     zbl = {0956.22005},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/}
}
TY  - JOUR
AU  - Nevo, Amos
AU  - Zimmer, Robert J.
TI  - Rigidity of Furstenberg entropy for semisimple Lie group actions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
SP  - 321
EP  - 343
VL  - 33
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/
DO  - 10.1016/s0012-9593(00)00113-0
LA  - en
ID  - ASENS_2000_4_33_3_321_0
ER  - 
%0 Journal Article
%A Nevo, Amos
%A Zimmer, Robert J.
%T Rigidity of Furstenberg entropy for semisimple Lie group actions
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 321-343
%V 33
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/
%R 10.1016/s0012-9593(00)00113-0
%G en
%F ASENS_2000_4_33_3_321_0
Nevo, Amos; Zimmer, Robert J. Rigidity of Furstenberg entropy for semisimple Lie group actions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 321-343. doi : 10.1016/s0012-9593(00)00113-0. https://www.numdam.org/articles/10.1016/s0012-9593(00)00113-0/

[1] Bougerol P., Lacroix J., Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. | Zbl

[2] Furstenberg H., A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. | MR | Zbl

[3] Furstenberg H., Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. | MR | Zbl

[4] Furstenberg H., Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. | Zbl

[5] Furstenberg H., Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. | MR | Zbl

[6] Furstenberg H., Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. | Zbl

[7] Feres R., Labourie F., Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. | Numdam | MR | Zbl

[8] Guivarc'H Y., Raugi A., Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. | MR | Zbl

[9] Kaimanovich V.A., Vershik A., Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. | MR | Zbl

[10] Lubotzky A., Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. | MR | Zbl

[11] Lubotzky A., Zimmer R.J., Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. | Zbl

[12] Margulis G.A., Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. | MR | Zbl

[13] Nevo A., Group actions with positive Furstenberg entropy, Preprint.

[14] Nevo A., Zimmer R.J., Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. | MR | Zbl

[15] Nevo A., Zimmer R.J., A generalization of the intermediate factor theorem, Preprint.

[16] Nevo A., Zimmer R.J., Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint.

[17] Zimmer R.J., Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. | Numdam | MR | Zbl

[18] Zimmer R.J., Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. | Numdam | MR | Zbl

[19] Zimmer R.J., On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. | MR | Zbl

[20] Zimmer R.J., Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. | MR | Zbl

[21] Zimmer R.J., Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. | MR | Zbl

  • Björklund, Michael; Hartman, Yair; Oppelmayer, Hanna Kudō-continuity of conditional entropies, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 59 (2023) no. 3 | DOI:10.1214/22-aihp1313
  • Björklund, Michael; Hartman, Yair; Oppelmayer, Hanna Boundaries of dense subgroups of totally disconnected groups, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/8970
  • Hartman, Yair; Yadin, Ariel Furstenberg entropy of intersectional invariant random subgroups, Compositio Mathematica, Volume 154 (2018) no. 10, p. 2239 | DOI:10.1112/s0010437x18007261
  • Bowen, Lewis; Hartman, Yair; Tamuz, Omer Generic stationary measures and actions, Transactions of the American Mathematical Society, Volume 369 (2017) no. 7, p. 4889 | DOI:10.1090/tran/6803
  • Danilenko, Alexandre Furstenberg entropy values for nonsingular actions of groups without property (T), Proceedings of the American Mathematical Society, Volume 145 (2016) no. 3, p. 1153 | DOI:10.1090/proc/13278
  • Hartman, Yair; Tamuz, Omer Furstenberg entropy realizations for virtually free groups and lamplighter groups, Journal d'Analyse Mathématique, Volume 126 (2015) no. 1, p. 227 | DOI:10.1007/s11854-015-0016-2
  • Bowen, Lewis Random walks on random coset spaces with applications to Furstenberg entropy, Inventiones mathematicae, Volume 196 (2014) no. 2, p. 485 | DOI:10.1007/s00222-013-0473-0
  • Nevo, Amos; Zimmer, Robert J. Invariant Rigid Geometric Structures and Smooth Projective Factors, Geometric and Functional Analysis, Volume 19 (2009) no. 2, p. 520 | DOI:10.1007/s00039-009-0005-7
  • Nevo, Amos; Zimmer, Robert J. Entropy of Stationary Measures and Bounded Tangential de-Rham Cohomology of Semisimple Lie Group Actions, Geometriae Dedicata, Volume 115 (2005) no. 1, p. 181 | DOI:10.1007/s10711-005-8194-1
  • Furman, Alex Chapter 12 Random walks on groups and random transformations, Volume 1 (2002), p. 931 | DOI:10.1016/s1874-575x(02)80014-5
  • Nevo, Amos; Zimmer, Robert J. A generalization of the intermediate factors theorem, Journal d'Analyse Mathématique, Volume 86 (2002) no. 1, p. 93 | DOI:10.1007/bf02786645
  • Nevo, Amos; Zimmer, Robert J. Actions of Semisimple Lie Groups with Stationary Measure, Rigidity in Dynamics and Geometry (2002), p. 321 | DOI:10.1007/978-3-662-04743-9_17

Cité par 12 documents. Sources : Crossref