@article{ASENS_2000_4_33_3_321_0, author = {Nevo, Amos and Zimmer, Robert J.}, title = {Rigidity of {Furstenberg} entropy for semisimple {Lie} group actions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {321--343}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {3}, year = {2000}, doi = {10.1016/s0012-9593(00)00113-0}, mrnumber = {2001k:22009}, zbl = {0956.22005}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(00)00113-0/} }
TY - JOUR AU - Nevo, Amos AU - Zimmer, Robert J. TI - Rigidity of Furstenberg entropy for semisimple Lie group actions JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 321 EP - 343 VL - 33 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(00)00113-0/ DO - 10.1016/s0012-9593(00)00113-0 LA - en ID - ASENS_2000_4_33_3_321_0 ER -
%0 Journal Article %A Nevo, Amos %A Zimmer, Robert J. %T Rigidity of Furstenberg entropy for semisimple Lie group actions %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 321-343 %V 33 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(00)00113-0/ %R 10.1016/s0012-9593(00)00113-0 %G en %F ASENS_2000_4_33_3_321_0
Nevo, Amos; Zimmer, Robert J. Rigidity of Furstenberg entropy for semisimple Lie group actions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 321-343. doi : 10.1016/s0012-9593(00)00113-0. http://archive.numdam.org/articles/10.1016/s0012-9593(00)00113-0/
[1] Products of Random Matrices with Applications to Random Schrödinger Operators, Birkhäuser, Boston, 1985. | Zbl
, ,[2] A Poisson formula for semi-simple Lie groups, Annals of Math. 77 (2) (1963) 335-386. | MR | Zbl
,[3] Non commuting random products, Trans. Amer. Math. Soc. 108 (1963) 377-428. | MR | Zbl
,[4] Random walks and discrete subgroups of Lie groups, in : Advances in Probability, Vol. 1, Dekker, New York, 1970, pp. 3-63. | Zbl
,[5] Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1974) 193-226. | MR | Zbl
,[6] Random walks on Lie groups, in : Wolf J.A., de Wilde M. (Eds.), Harmonic Analysis and Representations of Semi-Simple Lie Groups, D. Reidel, Dordrecht, 1980, pp. 467-489. | Zbl
,[7] Topological superrigidity and applications to Anosov actions, Ann. Sci. Éc. Norm. Sup. 31 (1998) 599-629. | Numdam | MR | Zbl
, ,[8] Propriétés de contraction d'un semi-groupe de matrices inversible. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989) 165-197. | MR | Zbl
, ,[9] Random walks on discrete groups : Boundary and entropy, Ann. Probab. 11 (3) (1983) 457-490. | MR | Zbl
, ,[10] Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71-82. | MR | Zbl
,[11] Arithmetic structure of fundamental groups and actions of semi-simple groups, Topology, to appear. | Zbl
, ,[12] Discrete Subgroups of Semisimple Lie Groups, A Series of Modern Surveys in Mathematics, Vol. 17, Springer, 1991. | MR | Zbl
,[13] Group actions with positive Furstenberg entropy, Preprint.
,[14] Homogeneous projective factors for actions of semisimple Lie groups, Invent. Math. 138 (1999) 229-252. | MR | Zbl
, ,[15] A generalization of the intermediate factor theorem, Preprint.
, ,[16] Random invariants, algebraic hulls, and projective quotients for semisimple Lie group actions, Preprint.
, ,[17] Ergodic theory, semi-simple Lie groups, and foliations by manifolds of negative curvature, Publ. Math. IHES 55 (1982) 37-62. | Numdam | MR | Zbl
,[18] Induced and amenable actions of Lie groups, Ann. Sci. Éc. Norm. Sup. 11 (1978) 407-428. | Numdam | MR | Zbl
,[19] On the cohomology of ergodic group actions, Israel J. Math. 35 (4) (1980) 289-300. | MR | Zbl
,[20] Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. | MR | Zbl
,[21] Representations of fundamental groups of manifolds with a semisimple transformation group, J. Amer. Math. Soc. 2 (1989) 201-213. | MR | Zbl
,Cité par Sources :