Generalized Hamilton flow and Poisson relation for the scattering kernel
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 361-382.
@article{ASENS_2000_4_33_3_361_0,
     author = {Stoyanov, Luchezar},
     title = {Generalized {Hamilton} flow and {Poisson} relation for the scattering kernel},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {361--382},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {3},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00115-4},
     mrnumber = {2001g:37120},
     zbl = {0963.37055},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)00115-4/}
}
TY  - JOUR
AU  - Stoyanov, Luchezar
TI  - Generalized Hamilton flow and Poisson relation for the scattering kernel
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
SP  - 361
EP  - 382
VL  - 33
IS  - 3
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(00)00115-4/
DO  - 10.1016/s0012-9593(00)00115-4
LA  - en
ID  - ASENS_2000_4_33_3_361_0
ER  - 
%0 Journal Article
%A Stoyanov, Luchezar
%T Generalized Hamilton flow and Poisson relation for the scattering kernel
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 361-382
%V 33
%N 3
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(00)00115-4/
%R 10.1016/s0012-9593(00)00115-4
%G en
%F ASENS_2000_4_33_3_361_0
Stoyanov, Luchezar. Generalized Hamilton flow and Poisson relation for the scattering kernel. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 3, pp. 361-382. doi : 10.1016/s0012-9593(00)00115-4. https://www.numdam.org/articles/10.1016/s0012-9593(00)00115-4/

[1] Abraham R., Marsden J., Foundations of Mechanics, London, Benjamin/Cummings, 1978. | MR | Zbl

[2] Edgar G., Measure, Topology, and Fractal Geometry, New York, Springer, 1990. | MR | Zbl

[3] Guillemin G., Sojourn time and asymptotic properties of the scattering matrix, Publ. RIMS Kyoto Univ. 12 (1977) 69-88. | MR | Zbl

[4] Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. III, Berlin, Springer, 1985. | Zbl

[5] Lax P., Phillips R., Scattering Theory, Academic Press, New York, 1967. | Zbl

[6] Melrose R., Microlocal parametrices for diffractive boundary value problems, Duke Math. J. 42 (1975) 605-635. | MR | Zbl

[7] Melrose R., Geometric Scattering Theory, Cambridge Univ. Press, Cambridge, 1994. | Zbl

[8] Melrose R., Sjöstrand J., Singularities in boundary value problems, I, Comm. Pure Appl. Math. 31 (1978) 593-617. | Zbl

[9] Melrose R., Sjöstrand J., Singularities in boundary value problems, II, Comm. Pure Appl. Math. 35 (1982) 129-168. | Zbl

[10] Morawetz C., Ralston J., Strauss W., Decay of solutions to the wave equation outside nontrapping obstacles, Comm. Pure Appl. Math. 30 (1977) 447-508. | MR | Zbl

[11] Petkov V., High frequency asymptotics of the scattering amplitude for non-convex bodies, Comm. Partial Differential Equations 5 (1980) 293-329. | MR | Zbl

[12] Petkov V., Stoyanov L., Geometry of Reflecting Rays and Inverse Spectral Problems, Chichester, Wiley, 1992. | MR | Zbl

[13] Petkov V., Stoyanov L., Sojourn times of trapping rays and the behaviour of the modified resolvent of the Laplacian, Ann. Inst. Henri Poincaré (Physique Théorique) 62 (1995) 17-45. | EuDML | Numdam | MR | Zbl

[14] Stoyanov L., Rigidity of the scattering length spectrum, Preprint 1997/1998. | MR | Zbl

[15] Stoyanov L., Poisson relation for the scattering kernel and inverse scattering by obstacles, in : Séminaire EDP, Exposé V, École Polytechnique, 1994-1995. | EuDML | Numdam | MR | Zbl

[16] Taylor M., Grazing rays and reflection of singularities to wave equations, Comm. Pure Appl. Math. 29 (1976) 1-38. | MR | Zbl

  • Gurfinkel, Tal; Noakes, Lyle; Stoyanov, Luchezar Travelling times in scattering by obstacles in curved space, Journal of Differential Equations, Volume 269 (2020) no. 11, p. 9508 | DOI:10.1016/j.jde.2020.05.049
  • Stoyanov, Luchezar Lens rigidity in scattering by non-trapping obstacles, Archiv der Mathematik, Volume 110 (2018) no. 4, p. 391 | DOI:10.1007/s00013-017-1126-0
  • Poisson relation for the scattering kernel for generic directions, Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems 2e (2017), p. 298 | DOI:10.1002/9781119107682.ch11
  • References, Geometry of the Generalized Geodesic Flow and Inverse Spectral Problems 2e (2017), p. 396 | DOI:10.1002/9781119107682.refs
  • Stoyanov, Luchezar Santalo's formula and stability of trapping sets of positive measure, Journal of Differential Equations, Volume 263 (2017) no. 5, p. 2991 | DOI:10.1016/j.jde.2017.04.019
  • Noakes, Lyle; Stoyanov, Luchezar Obstacles with non-trivial trapping sets in higher dimensions, Archiv der Mathematik, Volume 107 (2016) no. 1, p. 73 | DOI:10.1007/s00013-016-0907-1
  • Noakes, Lyle; Stoyanov, Luchezar Travelling times in scattering by obstacles, Journal of Mathematical Analysis and Applications, Volume 430 (2015) no. 2, p. 703 | DOI:10.1016/j.jmaa.2015.05.013
  • Petkov, Vesselin; Stoyanov, Luchezar Singularities of the Scattering Kernel Related to Trapping Rays, Advances in Phase Space Analysis of Partial Differential Equations, Volume 78 (2009), p. 235 | DOI:10.1007/978-0-8176-4861-9_14
  • Stoyanov, Luchezar On the Scattering Length Spectrum for Real Analytic Obstacles, Journal of Functional Analysis, Volume 177 (2000) no. 2, p. 459 | DOI:10.1006/jfan.2000.3645

Cité par 9 documents. Sources : Crossref