@article{ASENS_2000_4_33_4_561_0, author = {Sandier, Etienne and Serfaty, Sylvia}, title = {A rigorous derivation of free-boundary problem arising in superconductivity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {561--592}, publisher = {Elsevier}, volume = {Ser. 4, 33}, number = {4}, year = {2000}, doi = {10.1016/s0012-9593(00)00122-1}, mrnumber = {2002k:35324}, zbl = {01702168}, language = {en}, url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/} }
TY - JOUR AU - Sandier, Etienne AU - Serfaty, Sylvia TI - A rigorous derivation of free-boundary problem arising in superconductivity JO - Annales scientifiques de l'École Normale Supérieure PY - 2000 SP - 561 EP - 592 VL - 33 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/ DO - 10.1016/s0012-9593(00)00122-1 LA - en ID - ASENS_2000_4_33_4_561_0 ER -
%0 Journal Article %A Sandier, Etienne %A Serfaty, Sylvia %T A rigorous derivation of free-boundary problem arising in superconductivity %J Annales scientifiques de l'École Normale Supérieure %D 2000 %P 561-592 %V 33 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/ %R 10.1016/s0012-9593(00)00122-1 %G en %F ASENS_2000_4_33_4_561_0
Sandier, Etienne; Serfaty, Sylvia. A rigorous derivation of free-boundary problem arising in superconductivity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 4, pp. 561-592. doi : 10.1016/s0012-9593(00)00122-1. https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/
[1] Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. | MR | Zbl
, ,[2] Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint.
, , ,[3] A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. | MR | Zbl
, , ,[4] Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl
, , ,[5] Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear).
, ,[6] Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. | Numdam | MR | Zbl
, ,[7] Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. | MR | Zbl
, ,[8] A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. | MR | Zbl
, , ,[9] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). | MR | Zbl
, ,[10] Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl
,[11] L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | MR | Zbl
,[12] Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. | MR | Zbl
,[13] Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. | MR | Zbl
,[14] Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. | Numdam | MR | Zbl
, ,[15] On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). | Zbl
, ,[16] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. | MR | Zbl
,[17] Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. | MR | Zbl
,[18] Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. | MR | Zbl
,[19] Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996.
,- Stability conditions for mean-field limiting vorticities of the Ginzburg-Landau equations in 2D, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000622
- Uniqueness of blowup at singular points for superconductivity problem, Journal of Mathematical Physics, Volume 65 (2024) no. 8 | DOI:10.1063/5.0213622
- Improved Physics-Informed Neural Networks Combined with Small Sample Learning to Solve Two-Dimensional Stefan Problem, Entropy, Volume 25 (2023) no. 4, p. 675 | DOI:10.3390/e25040675
- Vortex patterns and sheets in segregated two component Bose–Einstein condensates, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1637-6
- Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation, SIAM Journal on Applied Dynamical Systems, Volume 19 (2020) no. 4, p. 2628 | DOI:10.1137/20m1314549
- Three Dimensional Vortex Approximation Construction and
ε -Level Estimates for the Ginzburg–Landau Functional, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 3, p. 1531 | DOI:10.1007/s00205-018-1304-7 - First Critical Field of Highly Anisotropic Three-Dimensional Superconductors via a Vortex Density Model, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, p. 4490 | DOI:10.1137/19m1237521
- Convergence of the Lawrence–Doniach Energy for Layered Superconductors with Magnetic Fields Near
, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 2, p. 1225 | DOI:10.1137/16m1064398 - Persistence of superconductivity in thin shells beyond Hc1, Communications in Contemporary Mathematics, Volume 18 (2016) no. 04, p. 1550047 | DOI:10.1142/s0219199715500479
- Confinement for repulsive-attractive kernels, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 5, p. 1227 | DOI:10.3934/dcdsb.2014.19.1227
- Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies, Journal of Statistical Physics, Volume 154 (2014) no. 3, p. 660 | DOI:10.1007/s10955-013-0891-9
- The Γ-Limit of the Two-Dimensional Ohta–Kawasaki Energy. I. Droplet Density, Archive for Rational Mechanics and Analysis, Volume 210 (2013) no. 2, p. 581 | DOI:10.1007/s00205-013-0657-1
- Vortex Density Models for Superconductivity and Superfluidity, Communications in Mathematical Physics, Volume 318 (2013) no. 1, p. 131 | DOI:10.1007/s00220-012-1629-2
- Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates, Communications in Mathematical Physics, Volume 321 (2013) no. 3, p. 817 | DOI:10.1007/s00220-013-1697-y
- Gamma convergence of Maxwell–Chern–Simons–Higgs energy, Journal of Functional Analysis, Volume 265 (2013) no. 3, p. 324 | DOI:10.1016/j.jfa.2013.05.019
- Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability, Physica D: Nonlinear Phenomena, Volume 260 (2013), p. 5 | DOI:10.1016/j.physd.2012.10.002
- Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 3, p. 699 | DOI:10.1007/s00205-012-0527-2
- AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. supp01 | DOI:10.1142/s0218202511400057
- Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 2, p. 651 | DOI:10.1137/11081986x
- Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 2, p. 217 | DOI:10.1016/j.anihpc.2010.11.006
- Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves, Journal d'Analyse Mathématique, Volume 114 (2011) no. 1, p. 341 | DOI:10.1007/s11854-011-0020-0
- Vorticity measure of type-II superconducting thin films, Journal of Applied Mathematics and Computing, Volume 37 (2011) no. 1-2, p. 267 | DOI:10.1007/s12190-010-0433-4
- Vortex-filaments for inhomogeneous superconductors in three dimensions, Nonlinear Analysis: Real World Applications, Volume 11 (2010) no. 2, p. 1046 | DOI:10.1016/j.nonrwa.2009.01.044
- On the Energy of Superconductors in Large and Small Domains, SIAM Journal on Mathematical Analysis, Volume 40 (2009) no. 5, p. 2077 | DOI:10.1137/070687992
- Energy estimate for the type-II superconducting film, Acta Mathematica Sinica, English Series, Volume 24 (2008) no. 1, p. 75 | DOI:10.1007/s10114-007-1014-9
- SCALING LIMITS OF THE CHERN–SIMONS–HIGGS ENERGY, Communications in Contemporary Mathematics, Volume 10 (2008) no. 01, p. 1 | DOI:10.1142/s0219199708002685
- A gradient flow approach to an evolution problem arising in superconductivity, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 11, p. 1495 | DOI:10.1002/cpa.20223
- Lines of vortices for solutions of the Ginzburg–Landau equations, Journal de Mathématiques Pures et Appliquées, Volume 89 (2008) no. 1, p. 49 | DOI:10.1016/j.matpur.2007.09.007
- Gamma limit of the nonself-dual Chern–Simons–Higgs energy, Journal of Functional Analysis, Volume 255 (2008) no. 3, p. 535 | DOI:10.1016/j.jfa.2008.04.020
- Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 1, p. 36 | DOI:10.1002/cpa.20086
- The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate, Journal of Functional Analysis, Volume 233 (2006) no. 1, p. 260 | DOI:10.1016/j.jfa.2005.06.020
- ENERGY EXPANSION AND VORTEX LOCATION FOR A TWO-DIMENSIONAL ROTATING BOSE–EINSTEIN CONDENSATE, Reviews in Mathematical Physics, Volume 18 (2006) no. 02, p. 119 | DOI:10.1142/s0129055x06002607
- Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate, Archive for Rational Mechanics and Analysis, Volume 178 (2005) no. 2, p. 247 | DOI:10.1007/s00205-005-0373-6
- On the Haïm Brezis Pioneering Contributions on the Location of Free Boundaries, Elliptic and Parabolic Problems, Volume 63 (2005), p. 217 | DOI:10.1007/3-7643-7384-9_23
- Vortices set and the applied magnetic field for superconductivity in dimension three, Journal of Mathematical Physics, Volume 46 (2005) no. 5 | DOI:10.1063/1.1899987
- Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions, Journal of Mathematical Physics, Volume 46 (2005) no. 9 | DOI:10.1063/1.2010354
- APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL, Communications in Contemporary Mathematics, Volume 06 (2004) no. 05, p. 803 | DOI:10.1142/s0219199704001537
- Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 12, p. 1627 | DOI:10.1002/cpa.20046
- ON THE HESSIAN OF THE ENERGY FORM IN THE GINZBURG–LANDAU MODEL OF SUPERCONDUCTIVITY, Reviews in Mathematical Physics, Volume 16 (2004) no. 04, p. 421 | DOI:10.1142/s0129055x04002059
- Limiting vorticities for the Ginzburg-Landau equations, Duke Mathematical Journal, Volume 117 (2003) no. 3 | DOI:10.1215/s0012-7094-03-11732-9
- Superconductivity near critical temperature, Journal of Mathematical Physics, Volume 44 (2003) no. 6, p. 2639 | DOI:10.1063/1.1570508
- Radial solutions for the Ginzburg–Landau equation with applied magnetic field, Nonlinear Analysis: Theory, Methods Applications, Volume 55 (2003) no. 7-8, p. 785 | DOI:10.1016/j.na.2003.07.001
- The Decrease of Bulk-Superconductivity Close to the Second Critical Field in the Ginzburg–Landau Model, SIAM Journal on Mathematical Analysis, Volume 34 (2003) no. 4, p. 939 | DOI:10.1137/s0036141002406084
- Limiting Behavior of the Ginzburg–Landau Functional, Journal of Functional Analysis, Volume 192 (2002) no. 2, p. 524 | DOI:10.1006/jfan.2001.3906
- On a model of rotating superfluids, ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), p. 201 | DOI:10.1051/cocv:2001108
Cité par 45 documents. Sources : Crossref