A rigorous derivation of free-boundary problem arising in superconductivity
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 4, pp. 561-592.
@article{ASENS_2000_4_33_4_561_0,
     author = {Sandier, Etienne and Serfaty, Sylvia},
     title = {A rigorous derivation of free-boundary problem arising in superconductivity},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {561--592},
     publisher = {Elsevier},
     volume = {Ser. 4, 33},
     number = {4},
     year = {2000},
     doi = {10.1016/s0012-9593(00)00122-1},
     mrnumber = {2002k:35324},
     zbl = {01702168},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/}
}
TY  - JOUR
AU  - Sandier, Etienne
AU  - Serfaty, Sylvia
TI  - A rigorous derivation of free-boundary problem arising in superconductivity
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2000
SP  - 561
EP  - 592
VL  - 33
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/
DO  - 10.1016/s0012-9593(00)00122-1
LA  - en
ID  - ASENS_2000_4_33_4_561_0
ER  - 
%0 Journal Article
%A Sandier, Etienne
%A Serfaty, Sylvia
%T A rigorous derivation of free-boundary problem arising in superconductivity
%J Annales scientifiques de l'École Normale Supérieure
%D 2000
%P 561-592
%V 33
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/
%R 10.1016/s0012-9593(00)00122-1
%G en
%F ASENS_2000_4_33_4_561_0
Sandier, Etienne; Serfaty, Sylvia. A rigorous derivation of free-boundary problem arising in superconductivity. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 33 (2000) no. 4, pp. 561-592. doi : 10.1016/s0012-9593(00)00122-1. https://www.numdam.org/articles/10.1016/s0012-9593(00)00122-1/

[1] Almeida L., Bethuel F., Topological methods for the Ginzburg-Landau equations, J. Math. Pures Appl. 77 (1998) 1-49. | MR | Zbl

[2] Aftalion A., Sandier E., Serfaty S., Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint.

[3] Berestycki H., Bonnet A., Chapman J., A semi-elliptic system arising in the theory of type-II superconductivity, Comm. Appl. Nonlinear Anal. 1 (3) (1994) 1-21. | MR | Zbl

[4] Bethuel F., Brezis H., Hélein F., Ginzburg-Landau Vortices, Birkhäuser, 1994. | MR | Zbl

[5] Bonnet A., Monneau R., Existence of a smooth free-boundary in a superconductor with a Nash-Moser inverse function theorem argument, Interfaces and Free Boundaries (to appear).

[6] Bethuel F., Rivière T., Vortices for a variational problem related to superconductivity, Annales IHP, Analyse non Linéaire 12 (1995) 243-303. | Numdam | MR | Zbl

[7] Cioranescu D., Murat F., Un terme étrange venu d'ailleurs, in : Nonlinear Partial Differential Equations and their Applications, Coll. de France Semin. Vol. II, Res. Notes Math., Vol. 60, 1982, pp. 98-138. | MR | Zbl

[8] Chapman S.J., Rubinstein J., Schatzman M., A mean-field model of superconducting vortices, Eur. J. Appl. Math. 7 (2) (1996) 97-111. | MR | Zbl

[9] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359 (electronic). | MR | Zbl

[10] Jerrard R., Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl

[11] Murat F., L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | MR | Zbl

[12] Rodrigues J.F., Obstacle Problems in Mathematical Physics, Mathematical Studies, North-Holland, 1987. | MR | Zbl

[13] Sandier E., Lower bounds for the energy of unit vector fields and application, J. Functional Anal. 152 (2) (1998) 379-403. | MR | Zbl

[14] Sandier E., Serfaty S., Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annales IHP, Analyse non Linéaire 17 (1) (2000) 119-145. | Numdam | MR | Zbl

[15] Sandier E., Serfaty S., On the energy of type-II superconductors in the mixed phase, Reviews in Math. Phys. (to appear). | Zbl

[16] Serfaty S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part I, Comm. Contemp. Math. 1 (2) (1999) 213-254. | MR | Zbl

[17] Serfaty S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field, Part II, Comm. Contemp. Math. 1 (3) (1999) 295-333. | MR | Zbl

[18] Serfaty S., Stable configurations in superconductivity : Uniqueness, multiplicity and vortex-nucleation, Arch. Rat. Mech. Anal. 149 (1999) 329-365. | MR | Zbl

[19] Tinkham M., Introduction to Superconductivity, 2nd edn., McGraw-Hill, 1996.

  • Rodiac, Rémy Stability conditions for mean-field limiting vorticities of the Ginzburg-Landau equations in 2D, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000622
  • Du, Lili; Tang, Xu; Wang, Cong Uniqueness of blowup at singular points for superconductivity problem, Journal of Mathematical Physics, Volume 65 (2024) no. 8 | DOI:10.1063/5.0213622
  • Li, Jiawei; Wu, Wei; Feng, Xinlong Improved Physics-Informed Neural Networks Combined with Small Sample Learning to Solve Two-Dimensional Stefan Problem, Entropy, Volume 25 (2023) no. 4, p. 675 | DOI:10.3390/e25040675
  • Aftalion, Amandine; Sandier, Etienne Vortex patterns and sheets in segregated two component Bose–Einstein condensates, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 1 | DOI:10.1007/s00526-019-1637-6
  • Guardia, Daniel Balagué; Barbaro, Alethea; Carrillo, Jose A.; Volkin, Robert Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation, SIAM Journal on Applied Dynamical Systems, Volume 19 (2020) no. 4, p. 2628 | DOI:10.1137/20m1314549
  • Román, Carlos Three Dimensional Vortex Approximation Construction and ε ε -Level Estimates for the Ginzburg–Landau Functional, Archive for Rational Mechanics and Analysis, Volume 231 (2019) no. 3, p. 1531 | DOI:10.1007/s00205-018-1304-7
  • Contreras, Andres; Peng, Guanying First Critical Field of Highly Anisotropic Three-Dimensional Superconductors via a Vortex Density Model, SIAM Journal on Mathematical Analysis, Volume 51 (2019) no. 6, p. 4490 | DOI:10.1137/19m1237521
  • Peng, Guanying Convergence of the Lawrence–Doniach Energy for Layered Superconductors with Magnetic Fields Near H_c_1, SIAM Journal on Mathematical Analysis, Volume 49 (2017) no. 2, p. 1225 | DOI:10.1137/16m1064398
  • Contreras, Andres; Lamy, Xavier Persistence of superconductivity in thin shells beyond Hc1, Communications in Contemporary Mathematics, Volume 18 (2016) no. 04, p. 1550047 | DOI:10.1142/s0219199715500479
  • Balagué, Daniel; A. Carrillo, José; Yao, Yao Confinement for repulsive-attractive kernels, Discrete Continuous Dynamical Systems - B, Volume 19 (2014) no. 5, p. 1227 | DOI:10.3934/dcdsb.2014.19.1227
  • Serfaty, Sylvia Ginzburg-Landau Vortices, Coulomb Gases, and Renormalized Energies, Journal of Statistical Physics, Volume 154 (2014) no. 3, p. 660 | DOI:10.1007/s10955-013-0891-9
  • Goldman, Dorian; Muratov, Cyrill B.; Serfaty, Sylvia The Γ-Limit of the Two-Dimensional Ohta–Kawasaki Energy. I. Droplet Density, Archive for Rational Mechanics and Analysis, Volume 210 (2013) no. 2, p. 581 | DOI:10.1007/s00205-013-0657-1
  • Baldo, S.; Jerrard, R. L.; Orlandi, G.; Soner, H. M. Vortex Density Models for Superconductivity and Superfluidity, Communications in Mathematical Physics, Volume 318 (2013) no. 1, p. 131 | DOI:10.1007/s00220-012-1629-2
  • Correggi, M.; Rougerie, N. Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates, Communications in Mathematical Physics, Volume 321 (2013) no. 3, p. 817 | DOI:10.1007/s00220-013-1697-y
  • Yu, Yong Gamma convergence of Maxwell–Chern–Simons–Higgs energy, Journal of Functional Analysis, Volume 265 (2013) no. 3, p. 324 | DOI:10.1016/j.jfa.2013.05.019
  • Balagué, D.; Carrillo, J.A.; Laurent, T.; Raoul, G. Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability, Physica D: Nonlinear Phenomena, Volume 260 (2013), p. 5 | DOI:10.1016/j.physd.2012.10.002
  • Baldo, S.; Jerrard, R. L.; Orlandi, G.; Soner, H. M. Convergence of Ginzburg–Landau Functionals in Three-Dimensional Superconductivity, Archive for Rational Mechanics and Analysis, Volume 205 (2012) no. 3, p. 699 | DOI:10.1007/s00205-012-0527-2
  • BERTOZZI, ANDREA L.; LAURENT, THOMAS; LÉGER, FLAVIEN AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS, Mathematical Models and Methods in Applied Sciences, Volume 22 (2012) no. supp01 | DOI:10.1142/s0218202511400057
  • Bertozzi, Andrea L.; Garnett, John B.; Laurent, Thomas Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 2, p. 651 | DOI:10.1137/11081986x
  • Serfaty, Sylvia; Ambrosio, Luigi; Mainini, Edoardo Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 28 (2011) no. 2, p. 217 | DOI:10.1016/j.anihpc.2010.11.006
  • Alama, Sam; Bronsard, Lia; Millot, Vincent Γ-Convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves, Journal d'Analyse Mathématique, Volume 114 (2011) no. 1, p. 341 | DOI:10.1007/s11854-011-0020-0
  • Kim, Kwang Ik; Liu, Zuhan Vorticity measure of type-II superconducting thin films, Journal of Applied Mathematics and Computing, Volume 37 (2011) no. 1-2, p. 267 | DOI:10.1007/s12190-010-0433-4
  • Liu, Zuhan; Zhou, Ling Vortex-filaments for inhomogeneous superconductors in three dimensions, Nonlinear Analysis: Real World Applications, Volume 11 (2010) no. 2, p. 1046 | DOI:10.1016/j.nonrwa.2009.01.044
  • Kurzke, Matthias; Spirn, Daniel On the Energy of Superconductors in Large and Small Domains, SIAM Journal on Mathematical Analysis, Volume 40 (2009) no. 5, p. 2077 | DOI:10.1137/070687992
  • Kim, Kwang Ik; Liu, Zu Han Energy estimate for the type-II superconducting film, Acta Mathematica Sinica, English Series, Volume 24 (2008) no. 1, p. 75 | DOI:10.1007/s10114-007-1014-9
  • KURZKE, MATTHIAS; SPIRN, DANIEL SCALING LIMITS OF THE CHERN–SIMONS–HIGGS ENERGY, Communications in Contemporary Mathematics, Volume 10 (2008) no. 01, p. 1 | DOI:10.1142/s0219199708002685
  • Ambrosio, Luigi; Serfaty, Sylvia A gradient flow approach to an evolution problem arising in superconductivity, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 11, p. 1495 | DOI:10.1002/cpa.20223
  • Aydi, Hassen Lines of vortices for solutions of the Ginzburg–Landau equations, Journal de Mathématiques Pures et Appliquées, Volume 89 (2008) no. 1, p. 49 | DOI:10.1016/j.matpur.2007.09.007
  • Kurzke, Matthias; Spirn, Daniel Gamma limit of the nonself-dual Chern–Simons–Higgs energy, Journal of Functional Analysis, Volume 255 (2008) no. 3, p. 535 | DOI:10.1016/j.jfa.2008.04.020
  • Alama, Stan; Bronsard, Lia Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 1, p. 36 | DOI:10.1002/cpa.20086
  • Ignat, Radu; Millot, Vincent The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate, Journal of Functional Analysis, Volume 233 (2006) no. 1, p. 260 | DOI:10.1016/j.jfa.2005.06.020
  • IGNAT, RADU; MILLOT, VINCENT ENERGY EXPANSION AND VORTEX LOCATION FOR A TWO-DIMENSIONAL ROTATING BOSE–EINSTEIN CONDENSATE, Reviews in Mathematical Physics, Volume 18 (2006) no. 02, p. 119 | DOI:10.1142/s0129055x06002607
  • Aftalion, Amandine; Alama, Stan; Bronsard, Lia Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate, Archive for Rational Mechanics and Analysis, Volume 178 (2005) no. 2, p. 247 | DOI:10.1007/s00205-005-0373-6
  • Díaz, J.I. On the Haïm Brezis Pioneering Contributions on the Location of Free Boundaries, Elliptic and Parabolic Problems, Volume 63 (2005), p. 217 | DOI:10.1007/3-7643-7384-9_23
  • Liu, Zuhan Vortices set and the applied magnetic field for superconductivity in dimension three, Journal of Mathematical Physics, Volume 46 (2005) no. 5 | DOI:10.1063/1.1899987
  • Alama, Stan; Bronsard, Lia Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions, Journal of Mathematical Physics, Volume 46 (2005) no. 9 | DOI:10.1063/1.2010354
  • BETHUEL, F.; ORLANDI, G.; SMETS, D. APPROXIMATIONS WITH VORTICITY BOUNDS FOR THE GINZBURG–LANDAU FUNCTIONAL, Communications in Contemporary Mathematics, Volume 06 (2004) no. 05, p. 803 | DOI:10.1142/s0219199704001537
  • Sandier, Etienne; Serfaty, Sylvia Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau, Communications on Pure and Applied Mathematics, Volume 57 (2004) no. 12, p. 1627 | DOI:10.1002/cpa.20046
  • COMTE, MYRIAM; SAUVAGEOT, MYRTO ON THE HESSIAN OF THE ENERGY FORM IN THE GINZBURG–LANDAU MODEL OF SUPERCONDUCTIVITY, Reviews in Mathematical Physics, Volume 16 (2004) no. 04, p. 421 | DOI:10.1142/s0129055x04002059
  • Sandier, Etienne; Serfaty, Sylvia Limiting vorticities for the Ginzburg-Landau equations, Duke Mathematical Journal, Volume 117 (2003) no. 3 | DOI:10.1215/s0012-7094-03-11732-9
  • Pan, Xing-Bin Superconductivity near critical temperature, Journal of Mathematical Physics, Volume 44 (2003) no. 6, p. 2639 | DOI:10.1063/1.1570508
  • Sauvageot, Myrto Radial solutions for the Ginzburg–Landau equation with applied magnetic field, Nonlinear Analysis: Theory, Methods Applications, Volume 55 (2003) no. 7-8, p. 785 | DOI:10.1016/j.na.2003.07.001
  • Sandier, Etienne; Serfaty, Sylvia The Decrease of Bulk-Superconductivity Close to the Second Critical Field in the Ginzburg–Landau Model, SIAM Journal on Mathematical Analysis, Volume 34 (2003) no. 4, p. 939 | DOI:10.1137/s0036141002406084
  • Jerrard, Robert L.; Soner, Halil Mete Limiting Behavior of the Ginzburg–Landau Functional, Journal of Functional Analysis, Volume 192 (2002) no. 2, p. 524 | DOI:10.1006/jfan.2001.3906
  • Serfaty, Sylvia On a model of rotating superfluids, ESAIM: Control, Optimisation and Calculus of Variations, Volume 6 (2001), p. 201 | DOI:10.1051/cocv:2001108

Cité par 45 documents. Sources : Crossref