@article{ASENS_2002_4_35_1_127_0, author = {Balmer, Paul and Walter, Charles}, title = {A {Gersten-Witt} spectral sequence for regular schemes}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {127--152}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {1}, year = {2002}, doi = {10.1016/s0012-9593(01)01084-9}, zbl = {1012.19003}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01084-9/} }
TY - JOUR AU - Balmer, Paul AU - Walter, Charles TI - A Gersten-Witt spectral sequence for regular schemes JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 127 EP - 152 VL - 35 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01084-9/ DO - 10.1016/s0012-9593(01)01084-9 LA - en ID - ASENS_2002_4_35_1_127_0 ER -
%0 Journal Article %A Balmer, Paul %A Walter, Charles %T A Gersten-Witt spectral sequence for regular schemes %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 127-152 %V 35 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01084-9/ %R 10.1016/s0012-9593(01)01084-9 %G en %F ASENS_2002_4_35_1_127_0
Balmer, Paul; Walter, Charles. A Gersten-Witt spectral sequence for regular schemes. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 1, pp. 127-152. doi : 10.1016/s0012-9593(01)01084-9. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01084-9/
[1] Derived Witt groups of a scheme, J. Pure Appl. Algebra 141 (1999) 101-129. | MR | Zbl
,[2] Triangular Witt groups. Part I: The 12-term localization exact sequence, 19 (2000) 311-363. | MR | Zbl
,[3] Triangular Witt groups. Part II: From usual to derived, Math. Z. 236 (2001) 351-382. | MR | Zbl
,[4] Balmer P., Walter C., Derived Witt groups and Grothendieck duality, in preparation.
[5] Faisceaux pervers, Astérisque 100 (1982). | MR | Zbl
, , ,[6] Homological Algebra, Princeton Univ. Press, 1956. | MR | Zbl
, ,[7] Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag, 1995. | MR | Zbl
,[8] Ettner A., Zur Residuenabbildung in der Theorie quadratischer Formen, Diplomarbeit, Regensburg, 1999.
[9] On the injectivity of the map of the Witt group of a scheme into the Witt group of its function field, Math. Ann. 277 (1987) 453-468. | MR | Zbl
,[10] Algebraic Geometry, Springer-Verlag, 1977. | MR | Zbl
,[11] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1-56. | MR | Zbl
,[12] Appendix: On Gabriel-Roiter's axioms for exact categories, Trans. Amer. Math. Soc. 351 (1999) 677-681. | MR
,[13] Categories for the Working Mathematician, Springer-Verlag, 1998. | MR | Zbl
,[14] Symmetric Bilinear Forms, Springer-Verlag, 1973. | MR | Zbl
, ,[15] The derived category of an exact category, J. Algebra 135 (1990) 388-394. | MR | Zbl
,[16] Witt groups of the punctured spectrum of a 3-dimensional local ring and a purity theorem, J. London Math. Soc. 59 (1999) 521-540. | MR | Zbl
, , , ,[17] A purity theorem for the Witt group, Ann. Scient. Éc. Norm. Sup. (4) 32 (1999) 71-86. | Numdam | MR | Zbl
, ,[18] A relation between Witt groups and 0-cycles in a regular ring, in: Springer Lect. Notes Math., 1046, 1984, pp. 261-328. | MR | Zbl
,[19] The filtered Gersten-Witt resolution for regular schemes, Preprint, 2000 , http://www.math.uiuc.edu/K-theory/0419/.
,[20] Witt groups of affine three-folds, Duke Math. J. 57 (1988) 947-954. | MR | Zbl
,[21] Quadratic and Hermitian forms in additive and Abelian categories, J. Algebra 59 (1979) 264-289. | MR | Zbl
, , ,[22] Algebraic L-theory. I. Foundations, Proc. London Math. Soc. (3) 27 (1973) 101-125. | MR | Zbl
,[23] Additive L-theory, 3 (1989) 163-195. | MR | Zbl
,[24] http://www.math.ohio-state.edu/~rost/schmid.html.
,[25] Schmid M., Wittringhomologie, Ph.D. dissertation, Regensburg 1997. Cf. [24].
[26] Des catégories dérivées des catégories abéliennes (Thèse de doctorat d'état, Paris, 1967), Astérisque 239 (1996). | Numdam | MR | Zbl
,[27] Walter C., Obstructions to the Existence of Symmetric Resolutions, in preparation.
[28] An Introduction to Homological Algebra, Cambridge Univ. Press, 1994. | MR | Zbl
,Cited by Sources: