@article{ASENS_2002_4_35_3_307_0, author = {Chinburg, Ted and Pappas, Georgios and Taylor, Martin J.}, title = {$\varepsilon $-constants and equivariant {Arakelov-Euler} characteristics}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {307--352}, publisher = {Elsevier}, volume = {Ser. 4, 35}, number = {3}, year = {2002}, doi = {10.1016/s0012-9593(02)01091-1}, zbl = {1039.11078}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(02)01091-1/} }
TY - JOUR AU - Chinburg, Ted AU - Pappas, Georgios AU - Taylor, Martin J. TI - $\varepsilon $-constants and equivariant Arakelov-Euler characteristics JO - Annales scientifiques de l'École Normale Supérieure PY - 2002 SP - 307 EP - 352 VL - 35 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(02)01091-1/ DO - 10.1016/s0012-9593(02)01091-1 LA - en ID - ASENS_2002_4_35_3_307_0 ER -
%0 Journal Article %A Chinburg, Ted %A Pappas, Georgios %A Taylor, Martin J. %T $\varepsilon $-constants and equivariant Arakelov-Euler characteristics %J Annales scientifiques de l'École Normale Supérieure %D 2002 %P 307-352 %V 35 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(02)01091-1/ %R 10.1016/s0012-9593(02)01091-1 %G en %F ASENS_2002_4_35_3_307_0
Chinburg, Ted; Pappas, Georgios; Taylor, Martin J. $\varepsilon $-constants and equivariant Arakelov-Euler characteristics. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 35 (2002) no. 3, pp. 307-352. doi : 10.1016/s0012-9593(02)01091-1. http://archive.numdam.org/articles/10.1016/s0012-9593(02)01091-1/
[1] Arai K., Conductor formula of Bloch, in tame case, Thesis, University of Tokyo, 2000 (in Japanese).
[2] Equivariant immersions and Quillen metrics, J. Differential Geom. 41 (1995) 53-157. | MR | Zbl
,[3] Bloch S., Cycles on Arithmetic schemes and Euler characteristics of curves, in: Proceedings of Symposia in Pure Math., Vol. 46, Part 2, AMS, 421-450. | MR | Zbl
[4] Burns D., Equivariant Tamagawa numbers and Galois module theory I, preprint. | MR
[5] Burns D., Equivariant Tamagawa numbers and Galois module theory II, preprint. | MR
[6] Local root numbers and hermitian Galois structure of rings of integers, Math. Annalen, 263 (1983) 251-261. | MR | Zbl
, ,[7] Galois structure of de Rham cohomology of tame covers of schemes, Ann. Math. 139 (1994) 443-490, Corrigendum: Ann. Math. 140 (1994) 251. | MR | Zbl
,[8] ε-constants and the Galois structure of de Rham cohomology, Ann. Math. 146 (1997) 411-473. | Zbl
, , , ,[9] On the ε-constants of arithmetic schemes, Math. Ann. 311 (1998) 377-395. | Zbl
, , , ,[10] On the ε-constants of a variety over a finite field, Amer. J. Math. 119 (1997) 503-522. | Zbl
, , , ,[11] Tame actions of group schemes: integrals and slices, Duke Math. J. 82 (2) (1996) 269-308. | MR | Zbl
, , , ,[12] ε-constants and the Galois structure of de Rham cohomology II, J. Reine Angew. Math. 519 (2000) 201-230. | Zbl
, , ,[13] ε-constants and Arakelov-Euler characteristics, Math. Res. Lett. 7 (2000) 433-446. | Zbl
, , ,[14] Chinburg T., Pappas G., Taylor M.J., Duality and hermitian Galois module structure, to appear in the Proc. L.M.S. | MR | Zbl
[15] Les constantes des équations fonctionnelles des fonctions L, in: Lecture Notes in Math., 349, Springer-Verlag, Heidelberg, 1974, pp. 501-597. | MR | Zbl
,[16] Galois Module Structure of Algebraic Integers, Springer Ergebnisse, Band 1, Folge 3, Springer-Verlag, Heidelberg, 1983. | MR | Zbl
,[17] Classgroups and Hermitian Modules, Progress in Mathematics, 48, Birkhäuser, Basel, 1984. | MR | Zbl
,[18] Algebraic Number Theory, Cambridge Studies in Advanced Mathematics, 27, Cambridge University Press, 1991. | MR | Zbl
, ,[19] Riemann-Roch Algebra, Grundlehren, 277, Springer-Verlag, 1985. | MR | Zbl
, ,[20] Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math. 131 (1990) 163-203, 205-238. | MR | Zbl
, ,[21] An arithmetic Riemann-Roch theorem, Invent. Math. 110 (1992) 473-543. | MR | Zbl
, ,[22] Analytic torsion and the arithmetic Todd genus. With an appendix by D. Zagier, Topology 30 (1) (1991) 21-54. | MR | Zbl
, ,[23] Residues and Duality, Lecture Notes in Math., 20, Springer-Verlag, 1966. | MR | Zbl
,[24] Mathematische Werke, Vandenhoeck and Ruprecht, Göttingen, 1983. | MR | Zbl
,[25] A Classical Introduction to Modern Number Theory, Springer Graduate Texts in Mathematics, 84, Springer, New York, 1982. | MR | Zbl
, ,[26] Logarithmic structures of Fontaine-Illusie, in: Proc. 1st JAMI Conf., Johns-Hopkins Univ. Press, 1990, pp. 191-224. | MR | Zbl
,[27] The projectivity of moduli spaces of stable curves, Math. Scand. 39 (1976) 19-55. | MR | Zbl
, ,[28] Kato K., Saito T., Conductor formula of Bloch, preprint, 2001.
[29] Algebraic Number Theory, Addison-Wesley, Reading MA, 1970. | MR | Zbl
,[30] Character theory and Artin L-functions, in: (Ed.), Algebraic Number Fields, Proc. Durham Symposium 1975, Academic Press, London, 1977. | MR | Zbl
,[31] Étale Cohomology, Princeton University Press, 1980. | MR | Zbl
,[32] Analytic torsion for complex manifolds, Ann. of Math. (2) 98 (1973) 154-177. | MR | Zbl
, ,[33] ε-factor of a tamely ramified sheaf on a variety, Inv. Math. 113 (1993) 389-417. | Zbl
,[34] Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics, 33, Cambridge University Press, Cambridge, 1992. | MR | Zbl
, , , ,[35] Thesis in “Algebraic Number Fields”, Academic Press, 1976.
, (Ed.),[36] On Fröhlich's conjecture for rings of integers of tame extensions, Invent. Math. 63 (1981) 41-79. | MR | Zbl
,[37] Classgroups of Group Rings, LMS Lecture Notes, 91, Cambridge University Press, Cambridge, 1984. | MR | Zbl
,Cited by Sources: