Local character expansions
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 30 (1997) no. 5, pp. 553-567.
@article{ASENS_1997_4_30_5_553_0,
     author = {Barbasch, Dan and Moy, Allen},
     title = {Local character expansions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {553--567},
     publisher = {Elsevier},
     volume = {Ser. 4, 30},
     number = {5},
     year = {1997},
     doi = {10.1016/s0012-9593(97)89931-4},
     mrnumber = {99j:22021},
     zbl = {0885.22021},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/s0012-9593(97)89931-4/}
}
TY  - JOUR
AU  - Barbasch, Dan
AU  - Moy, Allen
TI  - Local character expansions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1997
SP  - 553
EP  - 567
VL  - 30
IS  - 5
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/s0012-9593(97)89931-4/
DO  - 10.1016/s0012-9593(97)89931-4
LA  - en
ID  - ASENS_1997_4_30_5_553_0
ER  - 
%0 Journal Article
%A Barbasch, Dan
%A Moy, Allen
%T Local character expansions
%J Annales scientifiques de l'École Normale Supérieure
%D 1997
%P 553-567
%V 30
%N 5
%I Elsevier
%U https://www.numdam.org/articles/10.1016/s0012-9593(97)89931-4/
%R 10.1016/s0012-9593(97)89931-4
%G en
%F ASENS_1997_4_30_5_553_0
Barbasch, Dan; Moy, Allen. Local character expansions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 30 (1997) no. 5, pp. 553-567. doi : 10.1016/s0012-9593(97)89931-4. https://www.numdam.org/articles/10.1016/s0012-9593(97)89931-4/

[Ca] R. Carter, Finite groups of Lie type (Wiley Interscience, 1985). | MR | Zbl

[Ha] T. Hales, A simple definition of Transfer factors for unramified groups (Contemporary Math., Vol. 145, 1993, pp. 109-134). | MR | Zbl

[Ho] R. Howe, The Fourier of Transform and Germs of Characters (Math. Ann., Vol. 208, 1974, pp. 305-322). | MR | Zbl

[Ka] N. Kawanaka, Fourier Transforms of Nilpotently Supported Invariant Functions on a Simple Lie Algebra over a Finite Field, (Invent. Math., Vol. 69, 1982, pp. 411-435). | MR | Zbl

[Kb] N. Kawanaka, Shintani lifting and Gelfand-Graev representations, (Proc. Symposia in Pure Math., Vol. 47, 1987, pp. 147-163). | MR | Zbl

[Ko] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex Lie group, (Amer. Jour. of Math., Vol. 81, 1959, pp. 973-1032). | MR | Zbl

[L] G. Lusztig, Unipotent Support for Irreducible Representations (Advances in Math., Vol. 94, 1992, pp. 139-179). | MR | Zbl

[MW] C. Moeglin and J.-L. Waldspurger, Modèles de Whittaker dégénérés pour les groupes p-adiques, (Math. Z., Vol. 3, 1987, pp. 427-452). | MR | Zbl

[MPa] A. Moy and G. Prasad, Unrefined minimal K-types for p-adic groups, (Invent. Math., Vol. 116, 1994, pp. 393-4089). | MR | Zbl

[MPb] A. Moy and G. Prasad, Jacquet functors and unrefined minimal K-types, (Comment. Math. Helv., Vol. 71, 1996, pp. 98-121). | MR | Zbl

[Ro] J. Rogawski, An application of the building to orbital integrals, (Compositio Math., Vol. 42, 1980/1981, pp. 417-423). | Numdam | MR | Zbl

[Wa] J.-L. Waldspurger, Homogénéité de certaines distributions sur les groupes p-adiques, (Publ. Math. IHES, Vol. 81, 1995, pp. 25-72). | Numdam | MR | Zbl

[Wb] J.-L. Waldspurger, Quelques questions sur les intégrales orbitales unipotentes et les algèbres de Hecke, (Bull. Soc. Math. France, Vol. 124, no. 1, 1996, pp. 1-34). | Numdam | MR | Zbl

[Wc] J.-L. Waldspurger, Quelques résultats de finitude concernant les distributions invariantes sur les algèbres de Lie p-adiques, info preprint.

  • Peng, Zhifeng; Wang, Zhicheng Wavefront sets and descent method for finite symplectic groups, Israel Journal of Mathematics, Volume 265 (2025) no. 2, p. 661 | DOI:10.1007/s11856-024-2670-5
  • Ciubotaru, Dan; Mason-Brown, Lucas; Okada, Emile The wavefront sets of unipotent supercuspidal representations, Algebra Number Theory, Volume 18 (2024) no. 10, p. 1863 | DOI:10.2140/ant.2024.18.1863
  • Nevins, Monica The local character expansion as branching rules : nilpotent cones and the case of SL(2), Pacific Journal of Mathematics, Volume 329 (2024) no. 2, p. 259 | DOI:10.2140/pjm.2024.329.259
  • Gurevich, Maxim A triangular system for local character expansions of Iwahori-spherical representations of general linear groups, Comptes Rendus. Mathématique, Volume 361 (2023) no. G1, p. 21 | DOI:10.5802/crmath.384
  • Tsai, Cheng-Chiang Geometric wave-front set may not be a singleton, Journal of the American Mathematical Society, Volume 37 (2023) no. 1, p. 281 | DOI:10.1090/jams/1031
  • Peng, Zhifeng; Wang, Zhicheng Wavefront sets and descent method for finite unitary groups, Mathematische Zeitschrift, Volume 305 (2023) no. 4 | DOI:10.1007/s00209-023-03391-7
  • Frechette, Sharon M.; Gordon, Julia; Robson, Lance Shalika Germs for sln and sp2n Are Motivic, Women in Numbers Europe, Volume 2 (2015), p. 51 | DOI:10.1007/978-3-319-17987-2_3
  • Nevins, Monica On branching rules of depth-zero representations, Journal of Algebra, Volume 408 (2014), p. 1 | DOI:10.1016/j.jalgebra.2014.03.016
  • Qin, Yujun On the set of maximal nilpotent supports of supercuspidal representations, Pacific Journal of Mathematics, Volume 269 (2014) no. 1, p. 169 | DOI:10.2140/pjm.2014.269.169
  • DeBacker, Stephen; Kazhdan, David Stable Distributions Supported on the Nilpotent Cone for the Group G 2, The Unity of Mathematics, Volume 244 (2007), p. 205 | DOI:10.1007/0-8176-4467-9_6
  • Murnaghan, Fiona Local character expansions of admissible representations of p-adic general linear groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2003 (2003) no. 554 | DOI:10.1515/crll.2003.002
  • Rainbolt, Julianne G The Generalized Gelfand–Graev Representations of U(3,q), Journal of Algebra, Volume 202 (1998) no. 1, p. 44 | DOI:10.1006/jabr.1997.7250

Cité par 12 documents. Sources : Crossref