We derive sharp necessary conditions for weak sequential lower semicontinuity of integral functionals on Sobolev spaces, with an integrand which only depends on the gradient of a scalar field over a domain in . An emphasis is put on domains with infinite measure, and the integrand is allowed to assume the value .
Mots clés : scalar integral functionals, weak lower semicontinuity, necessary conditions
@article{COCV_2010__16_2_457_0, author = {Kr\"omer, Stefan}, title = {Necessary conditions for weak lower semicontinuity on domains with infinite measure}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {457--471}, publisher = {EDP-Sciences}, volume = {16}, number = {2}, year = {2010}, doi = {10.1051/cocv/2009005}, mrnumber = {2654202}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2009005/} }
TY - JOUR AU - Krömer, Stefan TI - Necessary conditions for weak lower semicontinuity on domains with infinite measure JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 457 EP - 471 VL - 16 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2009005/ DO - 10.1051/cocv/2009005 LA - en ID - COCV_2010__16_2_457_0 ER -
%0 Journal Article %A Krömer, Stefan %T Necessary conditions for weak lower semicontinuity on domains with infinite measure %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 457-471 %V 16 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2009005/ %R 10.1051/cocv/2009005 %G en %F COCV_2010__16_2_457_0
Krömer, Stefan. Necessary conditions for weak lower semicontinuity on domains with infinite measure. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 2, pp. 457-471. doi : 10.1051/cocv/2009005. http://archive.numdam.org/articles/10.1051/cocv/2009005/
[1] Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer, Berlin etc. (1989). | Zbl
,[2] Modern Methods in the Calculus of Variations: Lp Spaces, Springer Monographs in Mathematics. Springer, New York (2007). | Zbl
and ,[3] Direct methods in the calculus of variations. World Scientific, Singapore (2003). | Zbl
,[4] On the interior of the convex hull of an Euclidean set. Bull. Am. Math. Soc. 53 (1947) 299-301. | Zbl
,[5] Sobolev spaces. Springer-Verlag, Berlin etc. (1985). | Zbl
,[6] Integral estimates for differentiable functions on unbounded domains. Proc. Steklov Inst. Math. 170 (1987) 267-283. Translation from Tr. Mat. Inst. Steklova 170 (1984) 233-247 (Russian). | Zbl
,Cité par Sources :