This paper deals with topology optimization of domains subject to a pointwise constraint on the gradient of the state. To realize this constraint, a class of penalty functionals is introduced and the expression of the corresponding topological derivative is obtained for the Laplace equation in two space dimensions. An algorithm based on these concepts is proposed. It is illustrated by some numerical applications.
Mots-clés : topology optimization, topological derivative, penalty methods, pointwise state constraints
@article{COCV_2010__16_3_523_0, author = {Amstutz, Samuel}, title = {A penalty method for topology optimization subject to a pointwise state constraint}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {523--544}, publisher = {EDP-Sciences}, volume = {16}, number = {3}, year = {2010}, doi = {10.1051/cocv/2009013}, mrnumber = {2674625}, zbl = {1201.49046}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2009013/} }
TY - JOUR AU - Amstutz, Samuel TI - A penalty method for topology optimization subject to a pointwise state constraint JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 523 EP - 544 VL - 16 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2009013/ DO - 10.1051/cocv/2009013 LA - en ID - COCV_2010__16_3_523_0 ER -
%0 Journal Article %A Amstutz, Samuel %T A penalty method for topology optimization subject to a pointwise state constraint %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 523-544 %V 16 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2009013/ %R 10.1051/cocv/2009013 %G en %F COCV_2010__16_3_523_0
Amstutz, Samuel. A penalty method for topology optimization subject to a pointwise state constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 523-544. doi : 10.1051/cocv/2009013. http://archive.numdam.org/articles/10.1051/cocv/2009013/
[1] Sobolev spaces, Pure and Applied Mathematics 65. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). | Zbl
,[2] Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). | Zbl
,[3] Topology optimization for minimum stress design with the homogenization method. Struct. Multidiscip. Optim. 28 (2004) 87-98.
, and ,[4] Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363-393. | Zbl
, and ,[5] Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59-80. | Zbl
, , and ,[6] Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49 (2006) 87-108. | Zbl
,[7] A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573-588. | Zbl
and ,[8] Nonlinear superposition operators, Cambridge Tracts in Mathematics 95. Cambridge University Press, Cambridge (1990). | Zbl
and ,[9] Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Engrg. 71 (1988) 197-224. | Zbl
and ,[10] Topology optimization, Theory, methods and applications. Springer-Verlag, Berlin (2003). | Zbl
and ,[11] Numerical optimization, Theoretical and practical aspects. Universitext, Springer-Verlag, Berlin, Second Edition (2006). | Zbl
, , and ,[12] Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447-1466 (electronic). | Zbl
and ,[13] Incorporating topological derivatives into level set methods. J. Comput. Phys. 194 (2004) 344-362. | Zbl
, and ,[14] Topology optimization of continuum structures with local stress constraints. Internat. J. Numer. Methods Engrg. 43 (1998) 1453-1478. | Zbl
and ,[15] Bubble method for topology and shape optimization of structures. Struct. Optimization 8 (1994) 42-51.
, and ,[16] The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756-1778 (electronic). | Zbl
, and ,[17] Elliptic partial differential equations of second order, Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | Zbl
and ,[18] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985). | Zbl
,[19] Variation et optimisation de formes, Mathématiques et applications 48. Springer-Verlag, Heidelberg (2005). | Zbl
and ,[20] Stationary optimal control problems with pointwise state constraints (to appear).
and ,[21] A level set approach for the solution of a state-constrained optimal control problem. Numer. Math. 98 (2004) 135-166. | Zbl
and ,[22] Semi-smooth Newton methods for state-constrained optimal control problems. Systems Control Lett. 50 (2003) 221-228. | Zbl
and ,[23] Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. | Zbl
, and ,[24] Étude de problèmes d'optimal design, in Lecture Notes in Computer Sciences 41, Springer-Verlag, Berlin (1976) 54-62. | Zbl
and ,[25] Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82 (2003) 125-196. | Zbl
and ,[26] A topological derivative method for topology optimization. Struct. Multidiscip. Optim. 33 (2007) 375-386.
, , and ,[27] Regularity results for Laplace interface problems in two dimensions. Z. Anal. Anwendungen 20 (2001) 431-455. | Zbl
,[28] On generalized semi-infinite programming. Top 14 (2006) 1-59. | Zbl
and ,[29] First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl. 101 (1999) 677-691. | Zbl
and ,[30] Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176-201. | Zbl
,[31] Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2 (1980) 649-687. | Zbl
,[32] On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251-1272 (electronic). | Zbl
and ,[33] Introduction to shape optimization - Shape sensitivity analysis, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992). | Zbl
and ,[34] Generalized semi-infinite programming: numerical aspects. Optimization 49 (2001) 223-242. | Zbl
,[35] A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192 (2003) 227-246. | Zbl
, and ,Cité par Sources :