We consider a time optimal control problem arisen from the optimal management of a bioreactor devoted to the treatment of eutrophicated water. We formulate this realistic problem as a state-control constrained time optimal control problem. After analyzing the state system (a complex system of coupled partial differential equations with non-smooth coefficients for advection-diffusion-reaction with Michaelis-Menten kinetics, modelling the eutrophication processes) we demonstrate the existence of, at least, an optimal solution. Then we present a detailed derivation of a first order optimality condition (involving the corresponding adjoint systems) characterizing these optimal solutions. Finally, a numerical example is shown.
Mots clés : time optimal control, partial differential equations, optimality conditions, existence, bioreactor
@article{COCV_2011__17_3_722_0, author = {Alvarez-V\'azquez, Lino J. and Fern\'andez, Francisco J. and Mart{\'\i}nez, Aurea}, title = {Analysis of a time optimal control problem related to the management of a bioreactor}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {722--748}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010020}, mrnumber = {2826977}, zbl = {1230.49002}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010020/} }
TY - JOUR AU - Alvarez-Vázquez, Lino J. AU - Fernández, Francisco J. AU - Martínez, Aurea TI - Analysis of a time optimal control problem related to the management of a bioreactor JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 722 EP - 748 VL - 17 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010020/ DO - 10.1051/cocv/2010020 LA - en ID - COCV_2011__17_3_722_0 ER -
%0 Journal Article %A Alvarez-Vázquez, Lino J. %A Fernández, Francisco J. %A Martínez, Aurea %T Analysis of a time optimal control problem related to the management of a bioreactor %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 722-748 %V 17 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010020/ %R 10.1051/cocv/2010020 %G en %F COCV_2011__17_3_722_0
Alvarez-Vázquez, Lino J.; Fernández, Francisco J.; Martínez, Aurea. Analysis of a time optimal control problem related to the management of a bioreactor. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 722-748. doi : 10.1051/cocv/2010020. http://archive.numdam.org/articles/10.1051/cocv/2010020/
[1] Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol. 51 (2005) 367-388. | MR | Zbl
, and ,[2] Analysis of a multistate control problem related to food technology. J. Differ. Equ. 245 (2008) 130-153. | MR | Zbl
, and ,[3] Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349 (2009) 135-155. | MR | Zbl
, and ,[4] Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9 (2003) 1549-1570. | MR | Zbl
and ,[5] A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. Real World Appl. 1 (2000) 69-87. | MR | Zbl
, and ,[6] Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor (1976).
,[7] Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350-370. | Numdam | MR | Zbl
and ,[8] Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993-1006. | MR | Zbl
,[9] Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Appl. Math. Model. 25 (2001) 385-426. | Zbl
and ,[10] A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model. 145 (2001) 17-34.
, and ,[11] L∞-norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV 14 (2008) 254-283. | Numdam | MR | Zbl
and ,[12] The time optimal control of the Boussinesq equations. Numer. Funct. Anal. Optim. 24 (2003) 163-180. | MR | Zbl
and ,[13] Oxygen dynamics in coastal and lagoon ecosystems. Math. Comput. Model. 31 (2000) 135-141. | MR | Zbl
and ,[14] Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 60 (2005) 171-193.
, , and ,[15] Pontryagin's principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375-402. | MR | Zbl
and ,[16] Time optimal problems with boundary controls. Differ. Integr. Equat. 13 (2000) 1039-1072. | MR | Zbl
and ,[17] Nonlinear partial differential equations with applications. Birkhäuser-Verlag, Basel (2005). | Zbl
,[18] The existence of time optimal control of semilinear parabolic equations. Syst. Control Lett. 53 (2004) 171-175. | MR | Zbl
,[19] The optimal time control of a phase-field system. SIAM J. Control Optim. 42 (2003) 1483-1508. | MR | Zbl
and ,[20] Three-dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits. Hydrol. Proc. 17 (2003) 2957-2973.
, , , and ,[21] Nonlinear Functional Analysis and Its Applications - Part 3: Variational Methods and Optimization. Springer-Verlag, Berlin (1985). | MR | Zbl
,Cité par Sources :