Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855-1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.
Mots-clés : strain gradient plasticity, periodic homogenization, two-scale convergence, quasistatic evolutions
@article{COCV_2011__17_4_1035_0, author = {Giacomini, Alessandro and Musesti, Alessandro}, title = {Two-scale homogenization for a model in strain gradient plasticity}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1035--1065}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010036}, mrnumber = {2859864}, zbl = {1300.74008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010036/} }
TY - JOUR AU - Giacomini, Alessandro AU - Musesti, Alessandro TI - Two-scale homogenization for a model in strain gradient plasticity JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 1035 EP - 1065 VL - 17 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010036/ DO - 10.1051/cocv/2010036 LA - en ID - COCV_2011__17_4_1035_0 ER -
%0 Journal Article %A Giacomini, Alessandro %A Musesti, Alessandro %T Two-scale homogenization for a model in strain gradient plasticity %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 1035-1065 %V 17 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010036/ %R 10.1051/cocv/2010036 %G en %F COCV_2011__17_4_1035_0
Giacomini, Alessandro; Musesti, Alessandro. Two-scale homogenization for a model in strain gradient plasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1035-1065. doi : 10.1051/cocv/2010036. http://archive.numdam.org/articles/10.1051/cocv/2010036/
[1] Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl
,[2] The deformation of plastically non-homogeneous alloys. Philos. Mag. 21 (1970) 399-424.
,[3] Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335 (2002) 99-104. | MR | Zbl
, and ,[4] The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | MR | Zbl
, and ,[5] Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291. | MR | Zbl
, and ,[6] Mathematical analysis and numerical methods for science and technology 2, Functional and variational methods. Springer-Verlag, Berlin (1988). | MR | Zbl
and ,[7] Strain gradient plasticity. Adv. Appl. Mech. 33 (1997) 295-361. | Zbl
and ,[8] A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49 (2001) 2245-2271. | Zbl
and ,[9] Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite. J. Mech. Phys. Solids 52 (2004) 1855-1888. | MR | Zbl
and ,[10] Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96 (1986) 265-293. | MR | Zbl
and ,[11] Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40 (2008) 1201-1245. | MR | Zbl
and ,[12] A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52 (2004) 1379-1406. | MR | Zbl
,[13] A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids 53 (2005) 1624-1649. | MR | Zbl
and ,[14] Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35-86. | MR | Zbl
, and ,[15] Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73-99. | MR | Zbl
and ,[16] Evolution of rate-independent systems, in Handb. Differ. Equ., Evolutionary equations II, Elsevier/North-Holland, Amsterdam (2005) 461-559. | MR | Zbl
,[17] A mathematical model for rate independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117-129.
and ,[18] Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007) 642-668. | MR | Zbl
and ,[19] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[20] Nonlocal effects induced by homogenization, in Partial differential equations and the calculus of variations II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston (1989) 925-938. | MR | Zbl
,[21] Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121-133. | MR | Zbl
,[22] Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18 (2006) 223-252. | MR | Zbl
,[23] Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1363-1401. | MR | Zbl
,[24] Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl. 89 (2008) 477-504. | MR | Zbl
,[25] Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids 25 (1977) 182-202. | Zbl
,Cité par Sources :