Two-scale homogenization for a model in strain gradient plasticity
ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1035-1065.

Using the tool of two-scale convergence, we provide a rigorous mathematical setting for the homogenization result obtained by Fleck and Willis [J. Mech. Phys. Solids 52 (2004) 1855-1888] concerning the effective plastic behaviour of a strain gradient composite material. Moreover, moving from deformation theory to flow theory, we prove a convergence result for the homogenization of quasistatic evolutions in the presence of isotropic linear hardening.

DOI : 10.1051/cocv/2010036
Classification : 74C05, 74G65, 74Q05, 35B27, 49J45
Mots-clés : strain gradient plasticity, periodic homogenization, two-scale convergence, quasistatic evolutions
@article{COCV_2011__17_4_1035_0,
     author = {Giacomini, Alessandro and Musesti, Alessandro},
     title = {Two-scale homogenization for a model in strain gradient plasticity},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1035--1065},
     publisher = {EDP-Sciences},
     volume = {17},
     number = {4},
     year = {2011},
     doi = {10.1051/cocv/2010036},
     mrnumber = {2859864},
     zbl = {1300.74008},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2010036/}
}
TY  - JOUR
AU  - Giacomini, Alessandro
AU  - Musesti, Alessandro
TI  - Two-scale homogenization for a model in strain gradient plasticity
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2011
SP  - 1035
EP  - 1065
VL  - 17
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2010036/
DO  - 10.1051/cocv/2010036
LA  - en
ID  - COCV_2011__17_4_1035_0
ER  - 
%0 Journal Article
%A Giacomini, Alessandro
%A Musesti, Alessandro
%T Two-scale homogenization for a model in strain gradient plasticity
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2011
%P 1035-1065
%V 17
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2010036/
%R 10.1051/cocv/2010036
%G en
%F COCV_2011__17_4_1035_0
Giacomini, Alessandro; Musesti, Alessandro. Two-scale homogenization for a model in strain gradient plasticity. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 1035-1065. doi : 10.1051/cocv/2010036. http://archive.numdam.org/articles/10.1051/cocv/2010036/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl

[2] M.F. Ashby, The deformation of plastically non-homogeneous alloys. Philos. Mag. 21 (1970) 399-424.

[3] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335 (2002) 99-104. | MR | Zbl

[4] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585-1620. | MR | Zbl

[5] G. Dal Maso, A. Desimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291. | MR | Zbl

[6] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology 2, Functional and variational methods. Springer-Verlag, Berlin (1988). | MR | Zbl

[7] N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33 (1997) 295-361. | Zbl

[8] N.A. Fleck and J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49 (2001) 2245-2271. | Zbl

[9] N.A. Fleck and J.R. Willis, Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite. J. Mech. Phys. Solids 52 (2004) 1855-1888. | MR | Zbl

[10] G. Francfort and P.-M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96 (1986) 265-293. | MR | Zbl

[11] A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40 (2008) 1201-1245. | MR | Zbl

[12] P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52 (2004) 1379-1406. | MR | Zbl

[13] M.E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids 53 (2005) 1624-1649. | MR | Zbl

[14] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35-86. | MR | Zbl

[15] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73-99. | MR | Zbl

[16] A. Mielke, Evolution of rate-independent systems, in Handb. Differ. Equ., Evolutionary equations II, Elsevier/North-Holland, Amsterdam (2005) 461-559. | MR | Zbl

[17] A. Mielke and F. Theil, A mathematical model for rate independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117-129.

[18] A. Mielke and A.M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007) 642-668. | MR | Zbl

[19] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl

[20] L. Tartar, Nonlocal effects induced by homogenization, in Partial differential equations and the calculus of variations II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston (1989) 925-938. | MR | Zbl

[21] L. Tartar, Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121-133. | MR | Zbl

[22] A. Visintin, Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18 (2006) 223-252. | MR | Zbl

[23] A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1363-1401. | MR | Zbl

[24] A. Visintin, Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl. 89 (2008) 477-504. | MR | Zbl

[25] J.R. Willis, Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids 25 (1977) 182-202. | Zbl

Cité par Sources :