We consider an evolution equation similar to that introduced by Vese in [Comm. Partial Diff. Eq. 24 (1999) 1573-1591] and whose solution converges in large time to the convex envelope of the initial datum. We give a stochastic control representation for the solution from which we deduce, under quite general assumptions that the convergence in the Lipschitz norm is in fact exponential in time.
Mots-clés : convex envelope, viscosity solutions, stochastic control representation, nonautonomous gradient flows
@article{COCV_2012__18_3_611_0, author = {Carlier, Guillaume and Galichon, Alfred}, title = {Exponential convergence for a convexifying equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {611--620}, publisher = {EDP-Sciences}, volume = {18}, number = {3}, year = {2012}, doi = {10.1051/cocv/2011163}, mrnumber = {3041657}, zbl = {1255.35041}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2011163/} }
TY - JOUR AU - Carlier, Guillaume AU - Galichon, Alfred TI - Exponential convergence for a convexifying equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 611 EP - 620 VL - 18 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2011163/ DO - 10.1051/cocv/2011163 LA - en ID - COCV_2012__18_3_611_0 ER -
%0 Journal Article %A Carlier, Guillaume %A Galichon, Alfred %T Exponential convergence for a convexifying equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 611-620 %V 18 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2011163/ %R 10.1051/cocv/2011163 %G en %F COCV_2012__18_3_611_0
Carlier, Guillaume; Galichon, Alfred. Exponential convergence for a convexifying equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 3, pp. 611-620. doi : 10.1051/cocv/2011163. http://archive.numdam.org/articles/10.1051/cocv/2011163/
[1] Convex viscosity solutions and state constraints. J. Math. Pures Appl. 76 (1997) 265-288. | MR | Zbl
, and ,[2] Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications 43. American Mathematical Society, Providence, RI (1995). | MR | Zbl
and ,[3] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geom. 33 (1991) 749-786. | MR | Zbl
, and ,[4] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | MR | Zbl
, and ,[5] Controlled Markov Processes and Viscosity Solutions, Graduate Studies in Mathematics 58. Applications of Mathematics, Springer-Verlag (1993). | MR | Zbl
and ,[6] Differentiability of convex envelopes. C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 725-728. | MR | Zbl
and ,[7] The convex envelope is the solution of a nonlinear obstacle problem. Proc. Amer. Math. Soc. 135 (2007) 1689-1694. | MR | Zbl
,[8] Computing the convex envelope using a nonlinear partial differential equation. Math. Mod. Methods Appl. Sci. 18 (2008) 759-780. | MR | Zbl
,[9] The Dirichlet Problem for the Convex Envelope. Trans. Amer. Math. Soc. (to appear). | MR | Zbl
and ,[10] Stochastic representation of mean curvature type geometric flows. Ann. Probab. 31 (2003) 1145-1165. | MR | Zbl
and ,[11] Stochastic control and application to Finance. Lecture Notes available at http://www.cmap.polytechnique.fr/˜touzi/.
,[12] A method to convexify functions via curve evolution. Comm. Partial Diff. Eq. 24 (1999) 1573-1591. | MR | Zbl
,Cité par Sources :