In this paper, using direct and inverse images for fractional stochastic tangent sets, we establish the deterministic necessary and sufficient conditions which control that the solution of a given stochastic differential equation driven by the fractional Brownian motion evolves in some particular sets K. As a consequence, a comparison theorem is obtained.
Mots clés : stochastic viability, stochastic differential equation, stochastic tangent set, fractional brownian motion
@article{COCV_2012__18_4_915_0, author = {Nie, Tianyang and R\u{a}\c{s}canu, Aurel}, title = {Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {915--929}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011188}, mrnumber = {3019464}, zbl = {1263.60052}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2011188/} }
TY - JOUR AU - Nie, Tianyang AU - Răşcanu, Aurel TI - Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 915 EP - 929 VL - 18 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2011188/ DO - 10.1051/cocv/2011188 LA - en ID - COCV_2012__18_4_915_0 ER -
%0 Journal Article %A Nie, Tianyang %A Răşcanu, Aurel %T Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 915-929 %V 18 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2011188/ %R 10.1051/cocv/2011188 %G en %F COCV_2012__18_4_915_0
Nie, Tianyang; Răşcanu, Aurel. Deterministic characterization of viability for stochastic differential equation driven by fractional brownian motion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 915-929. doi : 10.1051/cocv/2011188. http://archive.numdam.org/articles/10.1051/cocv/2011188/
[1] Stochastic viability and invariance. Ann. Scuola Norm. Super. Pisa Cl. Sci. 27 (1990) 595-694. | Numdam | MR | Zbl
and ,[2] Stochastic calculus for fractional Brownian motion and applications. Springer (2006). | Zbl
, , and ,[3] Propriété de viabilité pour des équations différentielles stochastiques rétrogrades et applications à des équations aux derivées partielles. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1159-1162. | MR | Zbl
, and ,[4] Existence of stochastic control under state constraints. C. R. Acad. Sci. Paris Sér. I 327 (1998) 17-22. | MR | Zbl
, , and ,[5] Viability property for backward stochastic differential equation and applications to partial differential equation. Probab. Theory Relat. Fields 116 (2000) 485-504. | MR | Zbl
, and ,[6] Viability of moving sets for stochastic differential equation. Adv. Differential Equations 7 (2002) 1045-1072. | MR | Zbl
, , and ,[7] Viability for stochastic differential equation driven by fractional Brownian motions. J. Differential Equations 247 (2009) 1505-1528. | MR | Zbl
and ,[8] Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422-437. | MR | Zbl
and ,[9] A note on stochastic invariance for Ito equations. Bull. Pol. Acad. Sci., Math. 41 (1993) 139-150. | MR | Zbl
,[10] Stochastic calculus for fractional Brownian motion and related processes. Springer (2007). | MR | Zbl
,[11] Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002) 55-81. | MR | Zbl
and ,[12] Functional Analysis. Springer (1971).
,Cité par Sources :