We study the initial value problem for the drift-diffusion model arising in semiconductor device simulation and plasma physics. We show that the corresponding stationary problem in the whole space ℝn admits a unique stationary solution in a general situation. Moreover, it is proved that when n ≥ 3, a unique solution to the initial value problem exists globally in time and converges to the corresponding stationary solution as time tends to infinity, provided that the amplitude of the stationary solution and the initial perturbation are suitably small. Also, we show the sharp decay estimate for the perturbation. The stability proof is based on the time weighted Lp energy method.
Mots-clés : drift-diffusion model, stability, decay estimates, weighted energy method
@article{COCV_2012__18_4_1097_0, author = {Kobayashi, Ryo and Yamamoto, Masakazu and Kawashima, Shuichi}, title = {Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1097--1121}, publisher = {EDP-Sciences}, volume = {18}, number = {4}, year = {2012}, doi = {10.1051/cocv/2011191}, mrnumber = {3019474}, zbl = {1262.35036}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2011191/} }
TY - JOUR AU - Kobayashi, Ryo AU - Yamamoto, Masakazu AU - Kawashima, Shuichi TI - Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 1097 EP - 1121 VL - 18 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2011191/ DO - 10.1051/cocv/2011191 LA - en ID - COCV_2012__18_4_1097_0 ER -
%0 Journal Article %A Kobayashi, Ryo %A Yamamoto, Masakazu %A Kawashima, Shuichi %T Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 1097-1121 %V 18 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2011191/ %R 10.1051/cocv/2011191 %G en %F COCV_2012__18_4_1097_0
Kobayashi, Ryo; Yamamoto, Masakazu; Kawashima, Shuichi. Asymptotic stability of stationary solutions to the drift-diffusion model in the whole space. ESAIM: Control, Optimisation and Calculus of Variations, Tome 18 (2012) no. 4, pp. 1097-1121. doi : 10.1051/cocv/2011191. http://archive.numdam.org/articles/10.1051/cocv/2011191/
[1] Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion system. Ann. Henri Poincaré 1 (2000) 461−472. | MR | Zbl
and ,[2] Existence and nonexistence of solutions for a model of gravitational interactions of particles I. Colloq. Math. 66 (1994) 319−334. | MR | Zbl
and ,[3] A singular problem in electrolytes theory. Math. Methods Appl. Sci. 20 (1997) 767-782. | MR | Zbl
and ,[4] The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29 (2006) 1563-1583. | MR | Zbl
, , and ,[5] Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217-237. | MR | Zbl
and ,[6] Weighted Lq-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Jpn 49 (1997) 251-288. | MR | Zbl
and ,[7] Large time behavior for convection-diffusion equations in ℝN. J. Funct. Anal. 100 (1991) 119-161. | MR | Zbl
and ,[8] Lp energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves. J. Hyperbolic Differ. Equ. 1 (2004) 581-603. | MR | Zbl
, and ,[9] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399-415. | Zbl
and ,[10] Decay estimates and large time behavior of solutions to the drift-diffusion system. Funkcial. Ekvac. 51 (2008) 371-394. | MR | Zbl
and ,[11] Stationary solutions to the drift-diffusion model in the whole space. Math. Methods Appl. Sci. 32 (2009) 640-652. | MR | Zbl
, and ,[12] Lp wellposedness for the drift-diffusion system arising from the semiconductor device simulation. J. Math. Anal. Appl. 342 (2008) 1052-1067. | MR | Zbl
and ,[13] Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979) 343-362. | MR | Zbl
and ,[14] Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl. 49 (1975) 215-225. | MR | Zbl
,[15] Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in ℝ2. Differential Integral Equations 24 (2011) 29-68. | MR | Zbl
,[16] On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13 (1959) 115-162. | Numdam | MR | Zbl
,[17] Weak-Lp solutions for a model of self-gravitating particles with an external potential. Stud. Math. 179 (2007) 199-216. | Zbl
,[18] Fixed Point Theorems. Cambridge University Press, New York (1974). | MR | Zbl
,[19] Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). | MR | Zbl
,[20] On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992) 355-391. | MR | Zbl
,[21] Weakly Differentiable Functions. Springer-Verlag, New York (1989). | MR | Zbl
,Cité par Sources :