We consider a Canham - Helfrich - type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham - Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.
Mots-clés : helfrich functional, biomembranes, global minimizers, axisymmetric surfaces, multicomponent vesicle
@article{COCV_2013__19_4_1014_0, author = {Choksi, Rustum and Morandotti, Marco and Veneroni, Marco}, title = {Global minimizers for axisymmetric multiphase membranes}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1014--1029}, publisher = {EDP-Sciences}, volume = {19}, number = {4}, year = {2013}, doi = {10.1051/cocv/2012042}, mrnumber = {3182678}, zbl = {1283.49048}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2012042/} }
TY - JOUR AU - Choksi, Rustum AU - Morandotti, Marco AU - Veneroni, Marco TI - Global minimizers for axisymmetric multiphase membranes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 1014 EP - 1029 VL - 19 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2012042/ DO - 10.1051/cocv/2012042 LA - en ID - COCV_2013__19_4_1014_0 ER -
%0 Journal Article %A Choksi, Rustum %A Morandotti, Marco %A Veneroni, Marco %T Global minimizers for axisymmetric multiphase membranes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 1014-1029 %V 19 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2012042/ %R 10.1051/cocv/2012042 %G en %F COCV_2013__19_4_1014_0
Choksi, Rustum; Morandotti, Marco; Veneroni, Marco. Global minimizers for axisymmetric multiphase membranes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1014-1029. doi : 10.1051/cocv/2012042. http://archive.numdam.org/articles/10.1051/cocv/2012042/
[1] Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). | MR
, and ,[2] Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR
, and ,[3] Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 1067-1080.
, , and ,[4] Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821-824.
, and ,[5] A varifolds representation of the relaxed elastica functional. J. Convex Anal. 14 (2007) 543-564. | MR
and ,[6] The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970) 61-80.
,[7] Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. | MR
and ,[8] Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn. 20 (2008) 255-273. | MR
, and ,[9] Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. | MR
,[10] Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585-6612. | MR
and ,[11] A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904-2928. | MR
and ,[12] Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207-226.
, , and ,[13] Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (1974) 923-931.
,[14] Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). | MR
and ,[15] Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C 28 (1973) 693-703.
,[16] Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011).
,[17] Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. | MR
,[18] Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 45-71. | MR
,[19] Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (1993) 2964-2967.
and ,[20] Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670-2683.
and ,[21] Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. | MR
, and ,[22] A generalization of Rellich's theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001).
,[23] Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13-137.
,[24] Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229 (2010) 119-144. | MR
, , , and ,[25] Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14 (1998) 7427-7434.
, and ,[26] Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347-371. | MR
and ,[27] Riemannian geometry. Clarendon Press, Oxford (1993). | MR
,[28] Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006).
,Cité par Sources :