In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem
Mots-clés : penalization method, Schrödinger-Kirchhoff type problem, Lusternik-Schnirelmann theory, Moser iteration
@article{COCV_2014__20_2_389_0, author = {Figueiredo, Giovany M. and Santos, Jo\~ao R.}, title = {Multiplicity and concentration behavior of positive solutions for a {Schr\"odinger-Kirchhoff} type problem \protect\emph{via }penalization method}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {389--415}, publisher = {EDP-Sciences}, volume = {20}, number = {2}, year = {2014}, doi = {10.1051/cocv/2013068}, zbl = {1298.35084}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2013068/} }
TY - JOUR AU - Figueiredo, Giovany M. AU - Santos, João R. TI - Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 389 EP - 415 VL - 20 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2013068/ DO - 10.1051/cocv/2013068 LA - en ID - COCV_2014__20_2_389_0 ER -
%0 Journal Article %A Figueiredo, Giovany M. %A Santos, João R. %T Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 389-415 %V 20 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2013068/ %R 10.1051/cocv/2013068 %G en %F COCV_2014__20_2_389_0
Figueiredo, Giovany M.; Santos, João R. Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 389-415. doi : 10.1051/cocv/2013068. http://archive.numdam.org/articles/10.1051/cocv/2013068/
[1] On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 8 (2001) 43-56. | MR | Zbl
and ,[2] On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2 (2010) 409-417. | MR | Zbl
, and ,[3] Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49 (2005) 85-93. | MR | Zbl
, and ,[4] Nonlinear perturbations of a periodic Kirchhoff equation in IRN. Nonlinear Anal. 75 (2012) 2750-2759. | MR | Zbl
and ,[5] Multiplicity of positive solutions for a quasilinear problem in IRN via penalization method. Adv. Nonlinear Stud. 5 (2005) 551-572. | MR | Zbl
and ,[6] Multiple solutions for a Nonlinear Schrödinger Equation with Magnetic Fields. Commun. Partial Differ. Equ. 36 (2011) 1-22. | MR | Zbl
, and ,[7] Semiclassical stats of nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. Anal. 140 (1997) 285-300. | MR | Zbl
, and ,[8] Multiplicity results for some nonlinear Schorodinger equations with potentials. Arch. Ration. Mech. Anal. 159 (2001) 253-271. | MR | Zbl
, and ,[9] A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem. J. Math. Anal. Appl. 373 (2011) 248-251. | MR | Zbl
,[10] On a pertubed Dirichlet problem for a nonlocal differential equation of Kirchhoff type. BVP (2011) 891430. | MR | Zbl
,[11] Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions. J. Differ. Equ. 160 (2000) 118-138. | MR | Zbl
and ,[12] Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. 4 (1996) 121-137. | MR | Zbl
and ,[13] On the variational principle. J. Math. Anal. Appl. 47 (1974) 324-353. | MR | Zbl
,[14] Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25 (2012) 853-868. | MR | Zbl
and ,[15] Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential. J. Funct. Anal. 69 (1986) 397-408. | MR | Zbl
and ,[16] Existence and concentration of positive solutions for a Kirchhoff equation in IR3. J. Differ. Equ. 252 (2012) 1813-1834. | MR | Zbl
and ,[17] Mechanik. Teubner, Leipzig (1883).
,[18] Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253 (2012) 2285-2294. | MR | Zbl
, and ,[19] Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenincae Ser. A 14 (1989) 27-36. | MR | Zbl
,[20] On some questions in boundary value problems of mathematical physics International Symposium on Continuum, Mech. Partial Differ. Equ. Rio de Janeiro(1977). In vol. 30 of Math. Stud. North-Holland, Amsterdam (1978) 284-346. | MR | Zbl
,[21] Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63 (2005) 1967-1977. | Zbl
,[22] A new proof de Giorgi's theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13 (1960) 457-468. | MR | Zbl
,[23] Existence and multiplicity of non-trivial solutions for Schródinger-Kirchhoff equations with radial potential. Nonlinear Analysis 75 (2012) 3470-3479. | MR | Zbl
and ,[24] On a class of nonlinear Schrodinger equations. Z. Angew Math. Phys. 43 (1992) 27-42. | MR | Zbl
,[25] Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257 (2009) 3802-3822. | MR | Zbl
and ,[26] The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, edited by D.Y. Gao and D. Montreanu. International Press, Boston (2010) 597-632. | MR | Zbl
and ,[27] Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253 (2012) 2314-2351. | MR
, , and ,[28] Minimax Theorems. Birkhauser (1996). | MR | Zbl
,[29] Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN. Nonlinear Anal. RWA 12 (2011) 1278-1287. | MR | Zbl
,Cité par Sources :