Regularity results for an optimal design problem with a volume constraint
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 460-487.

Regularity results for minimal configurations of variational problems involving both bulk and surface energies and subject to a volume constraint are established. The bulk energies are convex functions with p-power growth, but are otherwise not subjected to any further structure conditions. For a minimal configuration (u,E), Hölder continuity of the function u is proved as well as partial regularity of the boundary of the minimal set E. Moreover, full regularity of the boundary of the minimal set is obtained under suitable closeness assumptions on the eigenvalues of the bulk energies.

DOI : 10.1051/cocv/2013071
Classification : 49N15, 49N60, 49N99
Mots-clés : regularity, nonlinear variational problem, free interfaces
@article{COCV_2014__20_2_460_0,
     author = {Carozza, Menita and Fonseca, Irene and Passarelli di Napoli, Antonia},
     title = {Regularity results for an optimal design problem with a volume constraint},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {460--487},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013071},
     mrnumber = {3264212},
     zbl = {1286.49041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013071/}
}
TY  - JOUR
AU  - Carozza, Menita
AU  - Fonseca, Irene
AU  - Passarelli di Napoli, Antonia
TI  - Regularity results for an optimal design problem with a volume constraint
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 460
EP  - 487
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013071/
DO  - 10.1051/cocv/2013071
LA  - en
ID  - COCV_2014__20_2_460_0
ER  - 
%0 Journal Article
%A Carozza, Menita
%A Fonseca, Irene
%A Passarelli di Napoli, Antonia
%T Regularity results for an optimal design problem with a volume constraint
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 460-487
%V 20
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013071/
%R 10.1051/cocv/2013071
%G en
%F COCV_2014__20_2_460_0
Carozza, Menita; Fonseca, Irene; Passarelli di Napoli, Antonia. Regularity results for an optimal design problem with a volume constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 460-487. doi : 10.1051/cocv/2013071. http://archive.numdam.org/articles/10.1051/cocv/2013071/

[1] H.W. Alt and L.A. Caffarelli, Existence and regularity results for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 107-144. | MR | Zbl

[2] E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115-135. | MR | Zbl

[3] E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasi-convex integrals. Arch. Rational Mech. Anal. 99 (1987) 261-281. | MR | Zbl

[4] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Eq. 1 (1993) 55-69. | MR | Zbl

[5] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR | Zbl

[6] E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99-130. | MR | Zbl

[7] M. Carozza and A. Passarelli Di Napoli, A regularity theorem for minimisers of quasiconvex integrals: The case 1 < p < 2. Proc. Roy. Soc. Edinburgh A Math. 126, 6 (1996) 1181-1200. | MR | Zbl

[8] L. Esposito and N. Fusco, A remark on a free interface problem with volume constraint. J. Convex Anal. 18 (2011) 417-426. | MR | Zbl

[9] L.C. Evans and F.R. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). | MR | Zbl

[10] I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Sci. Norm. Super. Pisa 24 (1997) 463-499. | Numdam | MR | Zbl

[11] I. Fonseca, N. Fusco, G. Leoni and V. Millot, Material voids in elastic solids with anisotropic surface energies. J. Math. Pures Appl. 96 (2011). | MR | Zbl

[12] I. Fonseca, N. Fusco, G. Leoni and M. Morini, Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Rational Mech. Anal. 186 (2007) 477-537. | MR | Zbl

[13] N. Fusco and J. Hutchinson, C1,α partial regularity of functions minimising quasiconvex integrals. Manuscripta Math. 54 (1985) 121-143. | MR | Zbl

[14] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear ellyptic systems. Ann. Math. Stud. Princeton University Press (1983). | MR | Zbl

[15] M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185-208. | Numdam | MR | Zbl

[16] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 2nd edn., vol. 224 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin (1983). | MR | Zbl

[17] E. Giusti. Direct methods in the calculus of variations. World Scientific (2003). | MR | Zbl

[18] M. Gurtin, On phase transitions with bulk, interfacial, and boundary energy. Arch. Rational Mech. Anal. 96 (1986) 243-264 | MR

[19] C.J. Larsen, Regularity of components in optimal design problems with perimeter penalization. Calc. Var. Partial Differ. Eq. 16 (2003) 17-29. | MR | Zbl

[20] F.H. Lin, Variational problems with free interfaces. Calc. Var. Partial Differ. Eq. 1 (1993) 149-168. | MR | Zbl

[21] F.H. Lin and R.V. Kohn, Partial regularity for optimal design problems involving both bulk and surface energies. Chin. Ann. Math. B 20, (1999) 137-158. | MR | Zbl

[22] V. Šverák and X. Yan. Non-Lipschitz minimizers of smooth uniformly convex variational integrals. Proc. Natl. Acad. Sci. USA 99 (2002) 15269-15276. | MR | Zbl

[23] I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334 (1982) 27-39. | MR | Zbl

Cité par Sources :