We study properties of the functional
Mots-clés : quasiconvexity, lower semicontinuity, relaxation, BV
@article{COCV_2014__20_4_1078_0, author = {Soneji, Parth}, title = {Relaxation in {BV} of integrals with superlinear growth}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1078--1122}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014008}, mrnumber = {3264235}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014008/} }
TY - JOUR AU - Soneji, Parth TI - Relaxation in BV of integrals with superlinear growth JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1078 EP - 1122 VL - 20 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014008/ DO - 10.1051/cocv/2014008 LA - en ID - COCV_2014__20_4_1078_0 ER -
%0 Journal Article %A Soneji, Parth %T Relaxation in BV of integrals with superlinear growth %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1078-1122 %V 20 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014008/ %R 10.1051/cocv/2014008 %G en %F COCV_2014__20_4_1078_0
Soneji, Parth. Relaxation in BV of integrals with superlinear growth. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 4, pp. 1078-1122. doi : 10.1051/cocv/2014008. http://archive.numdam.org/articles/10.1051/cocv/2014008/
[1] Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125-145. | MR | Zbl
and ,[2] Rank one property for derivatives of functions with bounded variation. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 239-274. | MR | Zbl
,[3] A geometrical approach to monotone functions in Rn, Math. Z. 230 (1999) 259-316. | MR | Zbl
and ,[4] Quasi-polyhedral approximation of BV-functions. Ric. Mat. 54 (2005) 485-490 (2006). | MR | Zbl
and ,[5] A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857-881. | MR | Zbl
,[6] Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291-322. | MR | Zbl
,[7] On the lower semicontinuity of quasiconvex integrals in SBV(Ω,Rk). Nonlinear Anal. 23 (1994) 405-425. | MR | Zbl
,[8] On the relaxation in BV(Ω;Rm) of quasi-convex integrals. J. Funct. Anal. 109 (1992) 76-97. | MR | Zbl
and ,[9] Higher integrability of the gradient and dimension of the singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differ. Eq. 16 (2003) 187-215. | MR | Zbl
, and ,[10] Functions of bounded variation and free discontinuity problems. Oxf. Math. Monogr. The Clarendon Press Oxford University Press, New York (2000). | MR | Zbl
, , and ,[11] Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl. 70 (1991) 269-323. | MR | Zbl
, , and ,[12] Integral representations of relaxed functionals on BV(Rn,Rk) and polyhedral approximation. Indiana Univ. Math. J. 42 (1993) 295-321. | MR | Zbl
and ,[13] Variational integrals on mappings of bounded variation and their lower semicontinuity. Arch. Ration. Mech. Anal. 115 (1991) 201-255. | MR | Zbl
and ,[14] W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | MR | Zbl
and ,[15] The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 463-479. | MR | Zbl
, , and ,[16] The interaction between bulk energy and surface energy in multiple integrals. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 737-756. | MR | Zbl
and ,[17] Semicontinuity, relaxation and integral representation in the calculus of variations. Pitman Res. Notes in Math. Ser., vol. 207. Longman Scientific & Technical, Harlow (1989). | MR | Zbl
,[18] Further results on Γ-convergence and lower semicontinuity of integral functionals depending on vector-valued functions. Ric. Mat. 39 (1990) 99-129. | MR | Zbl
and ,[19] Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscr. Math. 30 (1979/80) 387-416. | MR | Zbl
,[20] New functionals in the calculus of variations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210 (1989). | MR | Zbl
and ,[21] Frontiere orientate di misura minima e questioni collegate. Scuola Normale Superiore, Pisa (1972). | MR | Zbl
, , and ,[22] Measure theory and fine properties of functions. Stud.Adv. Math. CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[23] Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 99-115. | MR | Zbl
,[24] Relaxation of multiple integrals below the growth exponent. Annal. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309-338. | Numdam | MR | Zbl
and ,[25] Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 57-81. | MR | Zbl
and ,[26] Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. | MR | Zbl
and ,[27] Relaxation of quasiconvex functionals in BV(Ω,Rp) for integrands f(x,u,∇u). Arch. Ration. Mech. Anal. 123 (1993) 1-49. | MR | Zbl
and ,[28] Relaxation of multiple integrals in the space BV(Ω,Rp). Proc. Roy. Soc. Edinburgh Sect. A 121 (1992) 321-348. | MR | Zbl
and ,[29] Sublinear functions of measures and variational integrals. Duke Math. J. 31 (1964) 159-178. | MR | Zbl
and ,[30] Lower semicontinuity of quasi-convex integrals in BV(Ω;Rm). Calc. Var. Partial Differ. Eqs. 7 (1998) 249-261. | MR | Zbl
,[31] Quasiconvexification in W1,1 and optimal jump microstructure in BV relaxation. SIAM J. Math. Anal. 29 (1998) 823-848. | MR | Zbl
,[32] Intégrale, longueur, aire. Ann. Mat. Pura Appl. 7 (1902) 231-359. | JFM
,[33] Weak lower semicontinuity of polyconvex and quasiconvex integrals. Manuscr. Math. 85 (1994) 419-428. | Zbl
,[34] Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985) 1-28. | MR | Zbl
,[35] On the definition and the lower semicontinuity of certain quasiconvex integrals. Annal. Inst. Henri Poincaré Anal. Non Linéaire 3 (1986) 391-409. | Numdam | MR | Zbl
,[36] Geometry of sets and measures in Euclidean spaces. Cambridge Stud. Adv. Math., vol. 44. Cambridge University Press, Cambridge (1995), Fractals and rectifiability. | MR | Zbl
,[37] Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Amer. Math. Soc. 119 (1965) 125-149. | MR | Zbl
,[38] Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | MR | Zbl
,[39] Multiple integrals in the calculus of variations. Classics Math. (1966). | MR | Zbl
,[40] On quasiconvex functions which are homogeneous of degree 1. Indiana Univ. Math. J. 41 (1992) 295-301. | MR | Zbl
,[41] General theorems on semicontinuity and convergence with functionals. Sibirsk. Mat. Ž. 8 (1967) 1051-1069. | MR | Zbl
,[42] Lower semicontinuity and Young measures in BV(Ω;Rm) without Alberti's Rank-One Theorem. Adv. Calc. Var. 5 (2012) 127-159. | MR | Zbl
,[43] Real and complex analysis, 3rd edition, McGraw-Hill Book Co., New York (1987). | MR | Zbl
,[44] Regularity of relaxed minimizers of quasiconvex variational integrals with (p,q)-growth. Arch. Ration. Mech. Anal. 193 (2009) 311-337. | MR | Zbl
,[45] A simple partial regularity proof for minimizers of variational integrals. NoDEA Nonlinear Differ. Eq. Appl. 16 (2009) 109-129. | MR | Zbl
,[46] A new definition of the integral for nonparametric problems in the calculus of variations. Acta Math. 102 (1959) 23-32. | MR | Zbl
,[47] On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | MR | Zbl
,[48] Lower semicontinuity in BV of quasiconvex integrals with subquadratic growth. ESAIM: COCV 19 (2013) 555-573. | Numdam | MR | Zbl
,[49] Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts Math., vol. 120. Springer-Verlag, New York (1989). | MR | Zbl
,Cité par Sources :