In this paper multidimensional nonsmooth, nonconvex problems of the calculus of variations with codifferentiable integrand are studied. Special classes of codifferentiable functions, that play an important role in the calculus of variations, are introduced and studied. The codifferentiability of the main functional of the calculus of variations is derived. Necessary conditions for the extremum of a codifferentiable function on a closed convex set and its applications to the nonsmooth problems of the calculus of variations are described. Necessary optimality conditions in the main problem of the calculus of variations and in the problem of Bolza in the nonsmooth case are derived. Examples comparing presented results with other approaches to nonsmooth problems of the calculus of variations are given.
Keywords: nonsmooth analysis, calculus of variations, codifferentiable function, problem of bolza
@article{COCV_2014__20_4_1153_0, author = {Dolgopolik, Maxim}, title = {Nonsmooth {Problems} of {Calculus} of {Variations} \protect\emph{via {}Codifferentiation}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1153--1180}, publisher = {EDP-Sciences}, volume = {20}, number = {4}, year = {2014}, doi = {10.1051/cocv/2014010}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014010/} }
TY - JOUR AU - Dolgopolik, Maxim TI - Nonsmooth Problems of Calculus of Variations via Codifferentiation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 1153 EP - 1180 VL - 20 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014010/ DO - 10.1051/cocv/2014010 LA - en ID - COCV_2014__20_4_1153_0 ER -
%0 Journal Article %A Dolgopolik, Maxim %T Nonsmooth Problems of Calculus of Variations via Codifferentiation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 1153-1180 %V 20 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014010/ %R 10.1051/cocv/2014010 %G en %F COCV_2014__20_4_1153_0
Dolgopolik, Maxim. Nonsmooth Problems of Calculus of Variations via Codifferentiation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 4, pp. 1153-1180. doi : 10.1051/cocv/2014010. http://archive.numdam.org/articles/10.1051/cocv/2014010/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Set-valued analysis. Birkhauser, Boston (1990). | MR | Zbl
and ,[3] Truncated codifferential method for nonsmooth convex optimization. Pacific. J. Optim. 6 (2010) 483-496. | MR | Zbl
, , and ,[4] Codifferential method for minimizing DC functions. J. Glob. Optim. 50 (2011) 3-22. | MR | Zbl
and ,[5] The generalized problem of Bolza. SIAM J. Control Optim. 14 (1976) 469-478. | MR | Zbl
,[6] The Erdmann condition and Hamiltonian inclusions in optimzal control and the calculus of variations. Can. J. Math. 23 (1980) 494-509. | MR | Zbl
,[7] Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). | MR | Zbl
,[8] Direct Methods in the Calculus of Variations. Springer Science+Business Media, LCC, New York (2008). | MR | Zbl
,[9] On codifferentiable functions. Vestn. Leningr. Univ., Math. 21 (1988) 27-33. | MR | Zbl
,[10] Continuous generalized gradients for nonsmooth functions, in Lect. Notes Econ. Math. Systems, edited by A. Kurzhanski, K. Neumann and D. Pallaschke, vol. 304. Springer Verlag, Berlin (1988) 24-27. | MR
,[11] Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main (1995). | MR | Zbl
and ,[12] A method of truncated codifferential with application to some problems of cluster analysis. J. Glob. Optim. 23 (2002) 63-80. | MR | Zbl
, and ,[13] Codifferential Calculus in Normed Spaces. J. Math. Sci. 173 (2011) 441-462. | MR | Zbl
,[14] Euler-Lagrange and Hamiltonian formalism in dynamic optimization. Trans. Amer. Math. Soc. 349 (1997) 2871-2900. | MR | Zbl
,[15] The Euler and Weierstrass conditions for nonsmooth variational problems. Calc. Var. Partial Differ. Equ. 4 (1996) 59-87. | MR | Zbl
and ,[16] Theory of Extremal Problems. North-Holland, Amsterdam (1979). | MR | Zbl
and ,[17] New Necessary Conditions for the Generalized Problem of Bolza. SIAM J. Control Optim. 34 (1996) 1496-1511. | MR | Zbl
and ,[18] On variational analysis of differential inclusions, in Optimization and Nonlinear Analysis, edited by A. Ioffe, M. Marcus and S. Reich, vol. 244. Pitman Res. Notes Math. Ser. Longman, Harlow, Essex (1992) 199-214. | MR | Zbl
,[19] Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim. 33 (1995) 882-915. | MR | Zbl
,[20] Reduction of quasidifferentials and minimal representations. Math. Program. 66 (1994) 161-180. | MR | Zbl
and ,[21] Conjugate convex functions in optimal control and the calculus of variations. J. Math. Anal. Appl. 32 (1970) 174-222. | MR | Zbl
,[22] Generalized Hamiltonian equations for convex problems of Lagrange. Pacific. J. Math. 33 (1970) 411-428. | MR | Zbl
,[23] Existence and duality theorems for convex problems of Bolza. Trans. Amer. Math. Soc. 159 (1971) 1-40. | MR | Zbl
,[24] Minimal pairs of convex bodies in two dimensions. Mathematika 39 (1992) 267-273. | MR | Zbl
,[25] The Extended Euler-Lagrange Condition for Nonconvex Variation Problems. SIAM J. Control Optim. 35 (1997) 56-77. | MR | Zbl
and ,[26] Optimal Control. Birkhauser, Boston (2000). | MR | Zbl
,[27] Functional Analysis. Springer-Verlag, New York (1980). | MR | Zbl
,Cited by Sources: