We discuss the well-posedness of a new nonlinear model for nematic elastomers. The main novelty in our work is that the Frank energy penalizes spatial variations of the nematic director in the deformed, rather than in the reference configuration, as it is natural in the case of large deformations.
DOI : 10.1051/cocv/2014022
Mots-clés : Nematic elastomers, polyconvexity, invertibility
@article{COCV_2015__21_2_372_0, author = {Barchiesi, Marco and DeSimone, Antonio}, title = {Frank energy for nematic elastomers: a nonlinear model}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {372--377}, publisher = {EDP-Sciences}, volume = {21}, number = {2}, year = {2015}, doi = {10.1051/cocv/2014022}, mrnumber = {3348403}, zbl = {1311.74020}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014022/} }
TY - JOUR AU - Barchiesi, Marco AU - DeSimone, Antonio TI - Frank energy for nematic elastomers: a nonlinear model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 372 EP - 377 VL - 21 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014022/ DO - 10.1051/cocv/2014022 LA - en ID - COCV_2015__21_2_372_0 ER -
%0 Journal Article %A Barchiesi, Marco %A DeSimone, Antonio %T Frank energy for nematic elastomers: a nonlinear model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 372-377 %V 21 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014022/ %R 10.1051/cocv/2014022 %G en %F COCV_2015__21_2_372_0
Barchiesi, Marco; DeSimone, Antonio. Frank energy for nematic elastomers: a nonlinear model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 372-377. doi : 10.1051/cocv/2014022. https://www.numdam.org/articles/10.1051/cocv/2014022/
Ogden-type energies for nematic elastomers. Int. J. Nonlin. Mech. 47 (2012) 402–412. | DOI
and ,V. Agostiniani, G. Dal Maso and A. DeSimone, Attainment results for nematic elastomers. Proc. Roy. Soc. Edinb. A, in press (2013). | MR
L. Ambrosio and P. Tilli, Topics on analysis in metric spaces. In vol. 25 of Oxford lecture series in mathematics and its applications. Oxford University Press, New York (2004). | MR | Zbl
Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1976) 337–403. | DOI | MR | Zbl
,Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinb. 88A (1981) 315–328. | DOI | MR | Zbl
,M.C. Calderer, C.A. Garavito and C. Luo, Liquid crystal elastomers and phase transitions in rod networks. Preprint arXiv:1303.6220 (2013). | MR
Strain-order coupling in nematic elastomers: equilibrium configurations. Math. Models Methods Appl. Sci. 19 (2009) 601–630. | DOI | MR | Zbl
and ,P.G. Ciarlet, Mathematical elasticity. I. Three-dimensional elasticity. Vol. 20 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam (1988). | MR | Zbl
B. Dacorogna, Direct methods in the calculus of variations. Vol. 78 of Appl. Math. Sci., 2nd ed. Springer, Berlin (2008). | MR | Zbl
Elastic energies for nematic elastomers. Eur. Phys. J. E 29 (2009) 191–204. | DOI
and ,Local invertibility of Sobolev functions. SIAM J. Math. Anal. 26 (1995) 280–304. | DOI | MR | Zbl
and ,V.M. Gol’dshtein and Y.G. Reshetnyak, Quasiconformal mapping and Sobolev spaces, vol. 54. Kluwer Academic Publishers, Dordrecht, Germany (1990). | MR | Zbl
Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Ration. Mech. Anal. 197 (2010) 619–655. | DOI | MR | Zbl
and ,
Fracture surfaces and the regularity of inverses for
On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 11 (1994) 217–243. | DOI | Numdam | MR | Zbl
, and ,M. Warner and E.M. Terentjev, Liquid Crystal Elastomers. Clarendon Press, Oxford (2003).
- Linearization in magnetoelasticity, Advances in Calculus of Variations (2025) | DOI:10.1515/acv-2024-0019
- Variational Models with Eulerian–Lagrangian Formulation Allowing for Material Failure, Archive for Rational Mechanics and Analysis, Volume 249 (2025) no. 1 | DOI:10.1007/s00205-024-02076-7
- Reduced membrane model for liquid crystal polymer networks: Asymptotics and computation, Journal of the Mechanics and Physics of Solids, Volume 187 (2024), p. 105607 | DOI:10.1016/j.jmps.2024.105607
- Quasistatic evolution in magnetoelasticity under subcritical coercivity assumptions, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 6 | DOI:10.1007/s00526-023-02521-7
- A Reduced Model for Plates Arising as Low-Energy
-Limit in Nonlinear Magnetoelasticity, SIAM Journal on Mathematical Analysis, Volume 55 (2023) no. 4, p. 3108 | DOI:10.1137/21m1446836 - On compatibility of the natural configuration framework with general equation for non-equilibrium reversible–irreversible coupling (GENERIC): Derivation of anisotropic rate-type models, Journal of Non-Newtonian Fluid Mechanics, Volume 305 (2022), p. 104808 | DOI:10.1016/j.jnnfm.2022.104808
- Invertibility of Orlicz–Sobolev Maps, Research in Mathematics of Materials Science, Volume 31 (2022), p. 297 | DOI:10.1007/978-3-031-04496-0_13
- Equilibria of Charged Hyperelastic Solids, SIAM Journal on Mathematical Analysis, Volume 54 (2022) no. 2, p. 1470 | DOI:10.1137/21m1413286
- Rigorous derivation of active plate models for thin sheets of nematic elastomers, Mathematics and Mechanics of Solids, Volume 25 (2020) no. 10, p. 1804 | DOI:10.1177/1081286517699991
- Orlicz–Sobolev nematic elastomers, Nonlinear Analysis, Volume 194 (2020), p. 111513 | DOI:10.1016/j.na.2019.04.012
- Cell Motility and Locomotion by Shape Control, The Mathematics of Mechanobiology, Volume 2260 (2020), p. 1 | DOI:10.1007/978-3-030-45197-4_1
- A Phase-Field Approach to Eulerian Interfacial Energies, Archive for Rational Mechanics and Analysis, Volume 234 (2019) no. 1, p. 351 | DOI:10.1007/s00205-019-01391-8
- Actuation of Thin Nematic Elastomer Sheets with Controlled Heterogeneity, Archive for Rational Mechanics and Analysis, Volume 227 (2018) no. 1, p. 149 | DOI:10.1007/s00205-017-1167-3
- Local Invertibility in Sobolev Spaces with Applications to Nematic Elastomers and Magnetoelasticity, Archive for Rational Mechanics and Analysis, Volume 224 (2017) no. 2, p. 743 | DOI:10.1007/s00205-017-1088-1
- Effective Behavior of Nematic Elastomer Membranes, Archive for Rational Mechanics and Analysis, Volume 218 (2015) no. 2, p. 863 | DOI:10.1007/s00205-015-0871-0
Cité par 15 documents. Sources : Crossref