Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 138-164.

In this paper, we study the approximate control for a class of parabolic equations with rapidly oscillating coefficients in an ε-periodic composite with an interfacial contact resistance as well as its asymptotic behavior, as ε0. The condition on the interface depends on a parameter γ(-1,1]. The case γ=1 is the most interesting one, and the more delicate, since the homogenized problem is given by coupled system of a P.D.E. and an O.D.E., giving rise to a memory effect. The variational approach to approximate controllability introduced by Lions in [J.-L. Lions. In Proc. of Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, octubre 1990. Grupo de Análisis Matemático Aplicado de la University of Malaga, Spain (1991) 77–87] lead us to the construction of the control as the solution of a related transposed problem. The final data of this problem is the unique minimum point of a suitable functional J ε . The more interesting result of this study proves that the control and the corresponding solution of the ε-problem converge respectively to a control of the homogenized problem and to the corresponding solution. The main difficulties here are to find the appropriate limit functionals for the control of the homogenized system and to identify the limit of the controls.

Reçu le :
DOI : 10.1051/cocv/2014029
Classification : 35B27, 35Q93, 93B05
Mots-clés : Approximate controllability of parabolic equation, homogenization in a two-component domain with a periodic interface, jump condition on the interface depending on a parameter
Donato, Patrizia 1 ; Jose, Editha C. 2

1 Normandie Université, Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, CNRS, UMR 6085, Avenue de l’Université, BP 12, 76801 Saint-Étienne du Rouvray cedex, France
2 Institute of Mathematical Sciences and Physics, UP Los Baños, College, Los Baños, Laguna, Philippines
@article{COCV_2015__21_1_138_0,
     author = {Donato, Patrizia and Jose, Editha C.},
     title = {Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {138--164},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {1},
     year = {2015},
     doi = {10.1051/cocv/2014029},
     mrnumber = {3348418},
     zbl = {1320.35044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014029/}
}
TY  - JOUR
AU  - Donato, Patrizia
AU  - Jose, Editha C.
TI  - Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 138
EP  - 164
VL  - 21
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014029/
DO  - 10.1051/cocv/2014029
LA  - en
ID  - COCV_2015__21_1_138_0
ER  - 
%0 Journal Article
%A Donato, Patrizia
%A Jose, Editha C.
%T Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 138-164
%V 21
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014029/
%R 10.1051/cocv/2014029
%G en
%F COCV_2015__21_1_138_0
Donato, Patrizia; Jose, Editha C. Asymptotic behavior of the approximate controls for parabolic equations with interfacial contact resistance. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 138-164. doi : 10.1051/cocv/2014029. http://archive.numdam.org/articles/10.1051/cocv/2014029/

F. Ammar Khodja, Personal communication.

H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids. The Clarendon Press, Oxford (1947). | MR | Zbl

D. Cioranescu and P. Donato, An Introduction to Homogenization. Vol. 17 of Oxf. Lect. Ser. Math. Appl. Oxford Univ. Press, New York (1999). | MR | Zbl

D. Cioranescu and J. Saint Jean Paulin, Homogenization in Open Sets with Holes. J. Math. Anal. Appl. 71 (1979) 590–607. | DOI | MR | Zbl

D. Cioranescu, P. Donato and E. Zuazua, Approximate Controllability for the Wave Equation with Oscillating Coefficients. Proc. of IFLP Conf. 1990. Lect. Notes Control Inf. Sci. Springer-Verlag (1992) 118–124. | MR | Zbl

P. Donato and E. Jose, Corrector Results for a Parabolic Problem with a Memory Effect. ESAIM: M2AN 44 (2010) 421–454. | DOI | Numdam | MR | Zbl

P. Donato and A. Nabil, Approximate Controllability of Linear Parabolic Equations in Perforated Domains. ESAIM: COCV 6 (2001) 21–38. | Numdam | MR | Zbl

L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions. Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, NJ (2007) 107–121. | MR | Zbl

C. Fabre, J.P. Puel and E. Zuazua, Approximate Controllability for the Semilinear Heat Equation. Proc. Roy. Soc. Edinb. Sect. A 125 (1995) 31–61. | DOI | MR | Zbl

E. Jose, Homogenization of a Parabolic Problem with an Imperfect Interface. Rev. Roum. Math. Pures Appl. 54 (2009) 189–222. | MR | Zbl

J.-L. Lions, Remarques sur la controlabilité approchée. In Proc. of Jornadas Hispano-Francesas sobre Control de Sistemas Distribuidos, octubre 1990. Grupo de Análisis Matemático Aplicado de la University of Malaga, Spain (1991) 77–87. | MR | Zbl

J.-C. Saut and B. Scheurer, Unique Continuation for Some Evolution Equations. J. Diff. Eq. 66 (1987) 118–139. | DOI | MR | Zbl

E. Zuazua, Approximate Controllability for Linear Parabolic Equations with Rapidly Oscillating Coefficients. Control Cybernet. 4 (1994) 793–801. | MR | Zbl

E. Zuazua, Controllability of Partial Differential Equations and its Semi-Discrete Approximations. Discr. Contin. Dynam. Syst. 8 (2002) 469–513. | DOI | MR | Zbl

Cité par Sources :