For a Hamiltonian and a map , we consider the supremal functional
(1) |
(2) |
Mots clés : Quasiconformal maps, distortion, dilation, aronsson PDE, vector-valued calculus of variations inL∞, ∞-Harmonic maps
@article{COCV_2015__21_2_561_0, author = {Katzourakis, Nikos}, title = {Optimal $\infty{}${-Quasiconformal} {Immersions}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {561--582}, publisher = {EDP-Sciences}, volume = {21}, number = {2}, year = {2015}, doi = {10.1051/cocv/2014038}, zbl = {1317.30029}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014038/} }
TY - JOUR AU - Katzourakis, Nikos TI - Optimal $\infty{}$-Quasiconformal Immersions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 561 EP - 582 VL - 21 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014038/ DO - 10.1051/cocv/2014038 LA - en ID - COCV_2015__21_2_561_0 ER -
%0 Journal Article %A Katzourakis, Nikos %T Optimal $\infty{}$-Quasiconformal Immersions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 561-582 %V 21 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014038/ %R 10.1051/cocv/2014038 %G en %F COCV_2015__21_2_561_0
Katzourakis, Nikos. Optimal $\infty{}$-Quasiconformal Immersions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 561-582. doi : 10.1051/cocv/2014038. http://archive.numdam.org/articles/10.1051/cocv/2014038/
On quasiconformal mappings. J. Anal. Math. 3 (1954) 1-58; J. Anal. Math. 3 (1954) 207–208. | Zbl
,Quasiconformal deformations and mappings in . J. Anal. Math. 30 (1976) 74–97. | DOI | Zbl
,Extension of functions satisfying Lipschitz conditions. Arkiv für Mat. 6 (1967) 551–561. | DOI | Zbl
,On the partial differential equation . Arkiv für Mat. 7 (1968) 395–425. | Zbl
,Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195 (2010) 899–921. | DOI | Zbl
, and ,Extremal mappings of finite distortion. Proc. London Math. Soc. 91 (2005) 655–702. | DOI | Zbl
, , and ,L. Bers, Quasiconformal mappings and Teichmuüllers theorem. Analytic Functions. Princeton Univ. Press, Princeton, NJ (1960) 89–119. | Zbl
An Aronsson type approach to extremal quasiconformal mappings. J. Differ. Eqs. 253 (2012) 851–877. | DOI | Zbl
and ,M.G. Crandall, A visit with the -Laplacian. in Calculus of Variations and Non-Linear Partial Differential Equations. In vol. 1927 of Springer Lect. Notes Math. CIME, Cetraro Italy (2005). | Zbl
F.W. Gehring, Quasiconformal mappings in Euclidean spaces, in vol. 2 of Handbook of complex analysis: geometric function theory. Elsevier, Amsterdam (2005) 1–29. | Zbl
Extremal quasiconformal mappings with prescribed boundary values. Trans. Amer. Math. Soc. 138 (1969) 399−406. | DOI | Zbl
,Variational Problems for Maps and the Aronsson PDE System. J. Differ. Eqs. 253 (2012) 2123–2139. | DOI | Zbl
,-Minimal Submanifolds. Proc. Amer. Math. Soc. 142 (2014) 2797–2811. | DOI | Zbl
,The Subelliptic -Laplace System on Carnot−Carathéodory Spaces. Adv. Nonlinear Anal. 2 (2013) 213–233. | DOI | Zbl
,Explicit -Harmonic Maps whose Interfaces have Junctions and Corners. C. R. Acad. Sci. Paris, Ser. I 351 (2013) 677–680. | DOI | Zbl
,Nonuniqueness in Vector-Valued Calculus of Variations in and Some Linear Elliptic Systems, Commun. Pure Appl. Anal. 14 (2015) 313–327. | DOI | Zbl
,On the Structure of -Harmonic Maps, Commun. Partial Differ. Eqs. 39 (2014) 2091–2124. | DOI | Zbl
,R. Narasimhan, Analysis on real nad complex manifolds. Advanced Stud. Pure Math. North-Holland, Masson and CIE, Paris (1968). | Zbl
Extremal quasiconformal mappings. Results Math. 10 (1986) 168–210. | DOI | Zbl
,Extremale quasikonforme Abbildungen und quadratische Differentiale. Abh. Preuss. Akad. Wiss. Math.-Nat. Kl. 1939 (1940) 197. | JFM | Zbl
,J. Väisälä, Lectures on -dimensional quasiconformal mappings. Vol. 229 of Lect. Notes Math. Springer-Verlag, Berlin (1971). | Zbl
Cité par Sources :