Sensitivity relations for the Mayer problem with differential inclusions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 789-814.

In optimal control, sensitivity relations are usually understood as inclusions that identify the pair formed by the dual arc and the Hamiltonian as a suitable generalized gradient of the value function, evaluated along a given minimizing trajectory. In this paper, sensitivity relations are obtained for the Mayer problem associated with the differential inclusion F(x) and applied to express optimality conditions. The first application of our results concerns the maximum principle and consists in showing that a dual arc can be constructed for every element of the superdifferential of the final cost as a solution of an adjoint system. The second and last application we discuss in this paper concerns optimal design. We show that one can associate a family of optimal trajectories, starting at some point (t,x), with every nonzero reachable gradient of the value function at (t,x), in such a way that families corresponding to distinct reachable gradients have empty intersection.

Reçu le :
DOI : 10.1051/cocv/2014050
Classification : 34A60, 49J53
Mots clés : Mayer problem, differential inclusions, optimality conditions, sensitivity relations
Cannarsa, Piermarco 1 ; Frankowska, Hélène 2 ; Scarinci, Teresa 1, 2

1 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
2 CNRS, IMJ-PRG, UMR 7586, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris Diderot, Sorbonne Paris Cité, Case 247, 4 Place Jussieu, 75252 Paris, France
@article{COCV_2015__21_3_789_0,
     author = {Cannarsa, Piermarco and Frankowska, H\'el\`ene and Scarinci, Teresa},
     title = {Sensitivity relations for the {Mayer} problem with differential inclusions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {789--814},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {3},
     year = {2015},
     doi = {10.1051/cocv/2014050},
     mrnumber = {3358630},
     zbl = {1319.49036},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014050/}
}
TY  - JOUR
AU  - Cannarsa, Piermarco
AU  - Frankowska, Hélène
AU  - Scarinci, Teresa
TI  - Sensitivity relations for the Mayer problem with differential inclusions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 789
EP  - 814
VL  - 21
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014050/
DO  - 10.1051/cocv/2014050
LA  - en
ID  - COCV_2015__21_3_789_0
ER  - 
%0 Journal Article
%A Cannarsa, Piermarco
%A Frankowska, Hélène
%A Scarinci, Teresa
%T Sensitivity relations for the Mayer problem with differential inclusions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 789-814
%V 21
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014050/
%R 10.1051/cocv/2014050
%G en
%F COCV_2015__21_3_789_0
Cannarsa, Piermarco; Frankowska, Hélène; Scarinci, Teresa. Sensitivity relations for the Mayer problem with differential inclusions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 3, pp. 789-814. doi : 10.1051/cocv/2014050. http://archive.numdam.org/articles/10.1051/cocv/2014050/

J.P. Aubin and A. Cellina, Differential inclusions. Vol. 264 of Gründlehren der Mathematischen Wissenschaften. Springer-Verlag (1984). | MR | Zbl

J.P. Aubin and H. Frankowska, Set-valued analysis. Vol. 2 of Systems & Control: Foundations & Applications. Birkhäuser Boston Inc. (1990). | MR | Zbl

P. Bettiol, H. Frankowska and R. Vinter, Improved Sensitivity Relations in State Constrained Optimal Control. Appl. Math. Optim. (2014). | MR

P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. (1991) 1322–1347. | DOI | MR | Zbl

P. Cannarsa and P. Wolenski, Semiconcavity of the value function for a class of differential inclusions. Discrete Contin. Dyn. Syst. 29 (2011) 453–466. | DOI | MR | Zbl

P. Cannarsa, H. Frankowska and C. Sinestrari, Optimality conditions and synthesis for the minimum time problem. Set-Valued Anal. 8 (2000) 127–148. | DOI | MR | Zbl

P. Cannarsa, F. Marino and P. Wolenski, The dual arc inclusion with differential inclusions. Nonlin. Anal. 79 (2013) 176–189. | DOI | MR | Zbl

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton–Jacobi equations, and optimal control. Birkhäuser Boston Inc. (2004). | MR | Zbl

F. Clarke, Optimization and nonsmooth analysis. John Wiley & Sons Inc. (1983). | MR | Zbl

F. Clarke and R. Vinter, The relationship between the maximum principle and dynamic programming. SIAM J. Control Optim. 25 (1987) 1291–1311. | DOI | MR | Zbl

H. Frankowska and C. Olech, R-convexity of the integral of set-valued functions. Johns Hopkins University Press (1981) 117–129. | MR | Zbl

H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints. Nonlin. Differ. Eq. Appl. 20 (2013) 361–383. | DOI | MR | Zbl

A.E. Mayer, Eine Überkonvexität. Math. Z. (1935) 511–531. | JFM | MR | Zbl

L. Pasqualini, Superconvexité. Bull. de Cl. XXV (1939) 18–24. | JFM | Zbl

N.N. Subbotina, The maximum principle and the superdifferential of the value function. Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 18 (1989) 151–160. | MR | Zbl

P. Vincensini, Sur les figures superconvexes planes. Bull. Soc. Math. France 64 (1936) 197–208. | DOI | JFM | Numdam | MR

R.B. Vinter, New results on the relationship between dynamic programming and the maximum principle. Math. Control Signals Systems 1 (1988) 97–105. | DOI | MR | Zbl

Cité par Sources :