In this article, we study the null controllability of linearized compressible Navier−Stokes system in one and two dimension. We first study the one-dimensional compressible Navier−Stokes system for non-barotropic fluid linearized around a constant steady state. We prove that the linearized system around
Mots-clés : Linearized compressible Navier−Stokes System, Null controllability, localized interior control, boundary control, Gaussian Beam
@article{COCV_2015__21_4_1002_0, author = {Maity, Debayan}, title = {Some controllability results for linearized compressible navier\ensuremath{-}stokes system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1002--1028}, publisher = {EDP-Sciences}, volume = {21}, number = {4}, year = {2015}, doi = {10.1051/cocv/2014056}, mrnumber = {3395753}, zbl = {1328.35154}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014056/} }
TY - JOUR AU - Maity, Debayan TI - Some controllability results for linearized compressible navier−stokes system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 1002 EP - 1028 VL - 21 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014056/ DO - 10.1051/cocv/2014056 LA - en ID - COCV_2015__21_4_1002_0 ER -
%0 Journal Article %A Maity, Debayan %T Some controllability results for linearized compressible navier−stokes system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 1002-1028 %V 21 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014056/ %R 10.1051/cocv/2014056 %G en %F COCV_2015__21_4_1002_0
Maity, Debayan. Some controllability results for linearized compressible navier−stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 4, pp. 1002-1028. doi : 10.1051/cocv/2014056. https://www.numdam.org/articles/10.1051/cocv/2014056/
Exact local controllability for equations of viscous gas dynamics. Differ. Equ. 47 (2011) 1776–1795. | DOI | MR | Zbl
,Null controllability of a system of viscoelasticity with a moving control. J. Math. Pures Appl. 101 (2014) 198–222. | DOI | MR | Zbl
, and ,Approximate Controllability for Linearized Compressible Navier−Stokes System. J. Math. Anal. Appl. 422 (2015) 1034–1057. | DOI | MR | Zbl
,Null controllability of the Linearized Compressible Navier−Stokes System in One Dimension. J. Differ. Equ. 257 (2014) 3813–3849. | DOI | MR | Zbl
, , and ,Controllability and stabilizability of the linearized compressible Navier−Stokes System in one dimension. SIAM J. Control Optim. 50 (2012) 2959–2987. | DOI | MR | Zbl
, and ,Control and Nonlinearity. AMS, Math. Surv. Monogr. 136 (2007). | MR | Zbl
,Local exact controllability for the one-dimensional compressible Navier−Stokes equation. Arch. Ration. Mech. Anal. 206 (2012) 189–238. | DOI | MR | Zbl
, , and ,E. Feireisl, Dynamics of Viscous Compressible Fluids. Oxford Lect. Series Math. Appl. 26 (2014). | Zbl
On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32 (2002) 1-26. | MR | Zbl
and ,Null controllability of the structurally damped wave equation with moving control. SIAM J. Control Optim. 51 (2013) 660–684. | DOI | MR | Zbl
, and ,On the controllability of the linearized Benjamin−Bona−Mahony equation. SIAM J. Control Optim. 39 (2001) 1677–1696. | DOI | MR | Zbl
,S. Micu and E. Zuazua, An Introduction to the Controllability of Partial Differential Equations. Available at http://www.uam.es/personal˙pdi/ciencias/ezuazua/informweb/argel.pdf. | Zbl
J. Ralston, Gaussian beams and the propagation of singularities. Studies in partial differential equations, 206248, MAA Stud. Math. 23. Math. Assoc. America, Washington, DC (1982) 204–248. | MR | Zbl
A note on a class of observability problems for PDEs. Systems Control Lett. 58 (2009) 183–187. | DOI | MR | Zbl
,On the controllability of a wave equation with structural damping. Int. J. Tomogr. Stat. 5 (2007) 79–84. | MR
and ,J. Zabczyk, Mathematical control theory. An introduction. Modern Birkhäuser Classics. Reprint of the 1995 edition. Birkhäuser Boston, Inc., Boston, MA (2008). | MR | Zbl
- Local exact controllability to constant trajectories for Navier-Stokes-Korteweg model, Evolution Equations and Control Theory, Volume 0 (2025) no. 0, p. 0 | DOI:10.3934/eect.2025008
- Some controllability results for linearized compressible Navier-Stokes system with Maxwell's law, Journal of Mathematical Analysis and Applications, Volume 535 (2024) no. 1, p. 128108 | DOI:10.1016/j.jmaa.2024.128108
- On Local Controllability for Compressible Navier-Stokes Equations with Density Dependent Viscosities, Acta Mathematica Scientia, Volume 43 (2023) no. 2, p. 675 | DOI:10.1007/s10473-023-0213-5
- Lack of null controllability of one dimensional linear coupled transport-parabolic system with variable coefficients, Journal of Differential Equations, Volume 320 (2022), p. 64 | DOI:10.1016/j.jde.2022.02.049
- Local exact controllability for a viscous compressible two-phase model, Journal of Differential Equations, Volume 281 (2021), p. 58 | DOI:10.1016/j.jde.2021.02.001
- Boundary Stabilizability of the Linearized Compressible Navier–Stokes System in One Dimension by Backstepping Approach, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 3, p. 2147 | DOI:10.1137/20m1348893
- On the controllability of some equations of Sobolev-Galpern type, Journal of Differential Equations, Volume 268 (2020) no. 4, p. 1633 | DOI:10.1016/j.jde.2019.09.005
- Local Exact Boundary Controllability for the Compressible Navier–Stokes Equations, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 3, p. 2152 | DOI:10.1137/17m1127648
- Analysis of a system modelling the motion of a piston in a viscous gas, Journal of Mathematical Fluid Mechanics, Volume 19 (2017) no. 3, p. 551 | DOI:10.1007/s00021-016-0293-2
- Local exact controllability for the two- and three-dimensional compressible Navier–Stokes equations, Communications in Partial Differential Equations, Volume 41 (2016) no. 11, p. 1660 | DOI:10.1080/03605302.2016.1214597
Cité par 10 documents. Sources : Crossref