A notion of compliance robustness in topology optimization
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 64-87.

The goal of this paper is twofold. On one hand, our work revisits the minimization of the robust compliance in shape optimization, with a more natural and more general approach than what has been done before. On the other hand, following a more recent viewpoint on robust optimization, we study the maximization of the so-called stability radius for a fixed maximal compliance. We provide theorical as well as numerical results.

Reçu le :
DOI : 10.1051/cocv/2014066
Classification : 49Q10, 49M29, 74P05, 74P10, 74P15, 90C20
Mots-clés : Robustness, stability radius, compliance, topological derivative, topology optimization
Amstutz, Samuel 1 ; Ciligot-Travain, Marc 1

1 Laboratoire de Mathématiques d’Avignon, Faculté des Sciences, 33 rue Pasteur, 84000 Avignon, France.
@article{COCV_2016__22_1_64_0,
     author = {Amstutz, Samuel and Ciligot-Travain, Marc},
     title = {A notion of compliance robustness in topology optimization},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {64--87},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2014066},
     zbl = {1335.49069},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014066/}
}
TY  - JOUR
AU  - Amstutz, Samuel
AU  - Ciligot-Travain, Marc
TI  - A notion of compliance robustness in topology optimization
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 64
EP  - 87
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014066/
DO  - 10.1051/cocv/2014066
LA  - en
ID  - COCV_2016__22_1_64_0
ER  - 
%0 Journal Article
%A Amstutz, Samuel
%A Ciligot-Travain, Marc
%T A notion of compliance robustness in topology optimization
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 64-87
%V 22
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014066/
%R 10.1051/cocv/2014066
%G en
%F COCV_2016__22_1_64_0
Amstutz, Samuel; Ciligot-Travain, Marc. A notion of compliance robustness in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 64-87. doi : 10.1051/cocv/2014066. http://archive.numdam.org/articles/10.1051/cocv/2014066/

G. Allaire, Conception optimale de structures, Vol. 58 of Mathématiques & Applications (Berlin)[Mathematics & Applications]. With the collaboration of Marc Schoenauer (INRIA) in the writing of Chapter 8. Springer-Verlag, Berlin (2007). | Zbl

G. Allaire and C. Dapogny, A linearized approach to worst-case design in parametric and geometric shape optimization. Math. Models Methods Appl. Sci. 24 (2014) 2199–2257. | DOI | Zbl

G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. | DOI | Zbl

S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptot. Anal. 49 (2006) 87–108. | Zbl

S. Amstutz, Analysis of a level set method for topology optimization. Optim. Methods Softw. 26 (2011) 555–573. | DOI | Zbl

S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. | DOI | Zbl

S. Amstutz and M. Ciligot-Travain, Optimality conditions for shape and topology optimization subject to a cone constraint. SIAM J. Control Optim. 48 (2010) 4056–4077. | DOI | Zbl

I. Babuška, F. Nobile and R. Tempone, Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101 (2005) 185–219. | DOI | Zbl

Y. Ben-Haim, Information-gap Decision Theory. Series on Decision and Risk. Academic Press Inc., San Diego, CA (2001). Decisions under severe uncertainty. | Zbl

A. Ben-Tal, L. El Ghaoui and A. Nemirovski, Robust optimization. Princeton Series Appl. Math. Princeton University Press, Princeton, NJ (2009). | Zbl

M.P. Bendsøe and O. Sigmund, Topology optimization. Theory, Methods and Appl. Springer-Verlag, Berlin (2003). | Zbl

J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Ser. Oper. Res. Springer-Verlag, New York (2000). | Zbl

A. Cherkaev and E. Cherkaev, Optimal design for uncertain loading condition. In Homogenization. Vol. 50 of Ser. Adv. Math. Appl. Sci.. World Sci. Publ., River Edge, NJ (1999) 193–213. | Zbl

E. Cherkaev and A. Cherkaev, Principal compliance and robust optimal design. Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III. Vol. III. J. Elasticity 72 (2003) 71–98 | Zbl

F. De Gournay, G. Allaire and F. Jouve, Shape and topology optimization of the robust compliance via the level set method. ESAIM Control Optim. Calc. Var. 14 (2008) 43–70. | DOI | Zbl

J.-M. Feng, G.-X. Lin, R.-L. Sheu and Y. Xia, Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint. J. Global Optim. 54 (2012) 275–293. | DOI | Zbl

O. Flippo and B. Jansen, Duality and sensitivity in nonconvex quadratic optimization over an ellipsoid. Eur. J. Oper. Res. 94 (1996) 167–178. | DOI | Zbl

C. Fortin and H. Wolkowicz, The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19 (2004) 41–67. | DOI | Zbl

A.L. Fradkov and V.A. Jakubovič, The S-procedure and the duality relation in convex quadratic programming problems. Vestnik Leningrad. Univ. (1 Mat. Meh. Astronom. Vyp. 1) 155 (1973) 81–87. | Zbl

A.L. Fradkov and V.A. Jakubovič, The S-procedure and the duality relation in convex quadratic programming problems. Vestnik Leningrad. Univ. 6 (1979) 101–109. | Zbl

S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. | DOI | Zbl

D.M. Gay, Computing optimal locally constrained steps. SIAM J. Sci. Statis. Comput. 2 (1981) 186–197. | DOI | Zbl

X. Guo, W. Zhang and L. Zhang, Robust structural topology optimization considering boundary uncertainties. Comput. Methods Appl. Mech. Engrg. 253 (2013) 356–368. | DOI | Zbl

D. Hinrichsen and A.J. Pritchard, Real and complex stability radii: a survey. In Control of uncertain systems (Bremen, 1989). Vol. 6 of Progr. Systems Control Theory. Birkhäuser Boston, Boston, MA (1990) 119–162. | Zbl

D. Hinrichsen, A.J. Pritchard and S.B. Townley, Riccati equation approach to maximizing the complex stability radius by state feedback. Int. J. Control 52 (1990) 769–794. | DOI | Zbl

J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. II. Advanced theory and bundle methods. Vol. 306 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1993). | Zbl

A.D. Ioffe and V.M. Tihomirov, Theory of extremal problems. Vol. 6 of Stud. Math. Appl. Translated from the Russian by Karol Makowski. North-Holland Publishing Co., Amsterdam-New York (1979). | Zbl

C. Lemaréchal, The omnipresence of Lagrange. Ann. Oper. Res. 153 (2007) 9–27. | DOI | Zbl

J.J. More, Generalizations of the trust region problem. Optimiz. Methods Softw. 2 (1993) 189–209. | DOI

A.A. Novotny and J. Sokołowski, Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer, Heidelberg (2013). | Zbl

S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. | DOI | Zbl

F. Rendl and H. Wolkowicz, A semidefinite framework for trust region subproblems with applications to large scale minimization. Semidefinite programming. Math. Program. Ser. B 77 (1997) 273–299. | DOI | Zbl

R.T. Rockafellar, Conjugate duality and optimization. Lectures given at the Johns Hopkins University, Baltimore, Md., June (1973), Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 16. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1974). | Zbl

J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. | DOI | Zbl

D.C. Sorensen, Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19 (1982) 409–426. | DOI | Zbl

R.J. Stern and H. Wolkowicz, Trust region problems and nonsymmetric eigenvalue perturbations. SIAM J. Matrix Anal. Appl. 15 (1994) 755–778. | DOI | Zbl

R.J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5 (1995) 286–313. | DOI | Zbl

Cité par Sources :