Let , be a bounded Lipschitz domain and . We prove the inequality
Mots-clés : Korn’s inequality, Lie-algebra decomposition, Poincaré’s inequality, Maxwell estimates, relaxed micromorphic model
@article{COCV_2016__22_1_112_0, author = {Bauer, Sebastian and Neff, Patrizio and Pauly, Dirk and Starke, Gerhard}, title = {Dev-Div- and {DevSym-DevCurl-inequalities} for incompatible square tensor fields with mixed boundary conditions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {112--133}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {2016}, doi = {10.1051/cocv/2014068}, zbl = {1337.35004}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014068/} }
TY - JOUR AU - Bauer, Sebastian AU - Neff, Patrizio AU - Pauly, Dirk AU - Starke, Gerhard TI - Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 112 EP - 133 VL - 22 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014068/ DO - 10.1051/cocv/2014068 LA - en ID - COCV_2016__22_1_112_0 ER -
%0 Journal Article %A Bauer, Sebastian %A Neff, Patrizio %A Pauly, Dirk %A Starke, Gerhard %T Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 112-133 %V 22 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014068/ %R 10.1051/cocv/2014068 %G en %F COCV_2016__22_1_112_0
Bauer, Sebastian; Neff, Patrizio; Pauly, Dirk; Starke, Gerhard. Dev-Div- and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 112-133. doi : 10.1051/cocv/2014068. http://archive.numdam.org/articles/10.1051/cocv/2014068/
R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45 (1984) 1–22. | DOI | Zbl
, and ,D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013). | Zbl
First-order system least squares for the stress-displacement formulation: Linear elasticity. SIAM J. Numer. Anal. 41 (2003) 715–730. | DOI | Zbl
and ,Least squares methods for linear elasticity. SIAM J. Numer. Anal. 42 (2004) 826–842. | DOI | Zbl
and ,Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation. Math. Comput. 81 (2012) 1903–1927. | DOI | Zbl
and ,Least squares methods for incompressible Newtonian fluid flow: Linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. | DOI | Zbl
, and ,Mixed finite element methods for incompressible flow: Stationary Stokes equations. Numer. Methods Partial Differ. Equ. 26 (2010) 957–978. | DOI | Zbl
, , and ,A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. | DOI | Zbl
and ,On Korn’s inequality. Chin. Ann. Math. B 31 (2010) 607–618. | DOI | Zbl
,Generalized Korn’s inequality and conformal Killing vectors. Calc. Var. Partial Differ. Equ. 25 (2006) 535–540. | DOI | Zbl
,A dual-mixed approximation method for a three-field model of a nonlinear generalized Stokes problem. Comput. Methods Appl. Mech. Engrg. 197 (2008) 2886–2900. | DOI | Zbl
, and ,An application of a new coercive inequality to variational problems studied in general relativity and in Cosserat elasticity giving the smoothness of minimizers. Arch. Math. (Basel) 93 (2009) 587–596. | DOI | Zbl
and ,Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient. Zap. Nauchn. sem. St.-Petersburg Odtel. Math. Inst. Steklov (POMI) 385 (2010) 224–234. | Zbl
and ,Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1064–1079. | DOI | Zbl
, and ,On the regularity of differential forms satisfying mixed boundary conditions in a class of Lipschitz domains. Indiana Univ. Math. J. 58 (2009) 2043–2071. | DOI | Zbl
, and ,A compactness result for vector fields with divergence and curl in involving mixed boundary conditions. Appl. Anal. 66 (1997) 189–203. | DOI | Zbl
,First-order system least squares for generalized-Newtonian coupled Stokes-Darcy flow. Numer. Methods Partial Differ. Equ. 31 (2015) 1150–1173. | DOI | Zbl
,First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Numer. Anal. 49 (2011) 387–404. | DOI | Zbl
and ,J. Nečas, Sur les normes équivalentes dans et sur la coercivité des formes formellement positives, in Équations aux derivées partielles. Les Presses de l’Université de Montréal (1967) 102–128.
Infinitesimal elastic-plastic Cosserat micropolar theory. Modelling and global existence in the rate independent case. Proc. Roy. Soc. Edinb. A 135 (2005) 1017–1039. | DOI | Zbl
and ,Curl bounds Grad on . ESAIM: COCV 14 (2008) 148–159. | Numdam | Zbl
and ,A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Z. Angew. Math. Mech. 89 (2009) 107–122. | DOI | Zbl
and ,A numerical solution method for an infinitesimal elastic-plastic Cosserat model. M3AS Math. Mod. Meth. Appl. Sci. 17 (2007) 1211–1239. | DOI | Zbl
, , and ,Notes on strain gradient plasticity. Finite strain covariant modelling and global existence in the infinitesimal rate-independent case. M3AS Math. Mod. Meth. Appl. Sci. 19 (2009) 1–40. | Zbl
, and ,On a canonical extension of Korn’s first inequality to H(Curl) motivated by gradient plasticity with plastic spin. C. R. Math. 349 (2011) 1251–1254. | DOI | Zbl
, and ,Maxwell meets Korn: a new coercive inequality for tensor fields in with square-integrable exterior derivative. Math. Methods Appl. Sci. 35 (2012) 65–71. | DOI | Zbl
, and ,A unifying perspective: the relaxed linear micromorphic continuum. Cont. Mech. Thermodyn. 26 (2014) 639–681. | DOI | Zbl
, , , and ,Poincaré meets Korn via Maxwell: Extending Korn’s first inequality to incompatible tensor fields. J. Differ. Equ. 258 (2015) 1267–1302. | DOI | Zbl
, and ,Counterexamples to Korn’s inequality with non-constant rotation coefficients. Math. Mech. Solids 16 (2011) 172–176. | DOI | Zbl
,Y.G. Reshetnyak, Stability Theorems in Geometry and Analysis. Kluwer Academic Publishers, London (1994). | Zbl
New Korn-type inequalities and regularity of solutions to linear elliptic systems and anisotropic variational problems involving the trace-free part of the symmetric gradient. Calc. Var. Partial Differ. Equ. 43 (2012) 147–172. | DOI | Zbl
,H. Sohr, The Navier−Stokes Equations. Birkhäuser, Basel (2001). | Zbl
K. Yoshida, Functional Analysis. Springer-Verlag, Berlin, 6th edition (1980).
Cité par Sources :