Parabolic control problems in space-time measure spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 355-370.

Optimal control problems in measure spaces governed by parabolic equations with are considered. The controls appear as spatial measure in the initial condition and as space-time measures as forcing functions. First order optimality conditions are derived and certain structural properties, in particular sparsity, are discussed. An framework for approximation if these highly irregular problems is also proposed.

DOI : 10.1051/cocv/2015008
Classification : 90C48, 49J52, 49K20
Mots-clés : Space-time measure controls, optimal control, sparsity, parabolic equations, first order optimality conditions, numerical approximation
Casas, Eduardo 1 ; Kunisch, Karl 2, 3

1 Departmento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, 39005 Santander, Spain
2 Institute for Mathematics and Scientific Computing, University of Graz, Heinrichstrasse 36, 8010 Graz, Austria
3 Radon Institute, Austrian Academy of Sciences, 69 Alterberger Straβe, 4040 Linz, Austria
@article{COCV_2016__22_2_355_0,
     author = {Casas, Eduardo and Kunisch, Karl},
     title = {Parabolic control problems in space-time measure spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {355--370},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015008},
     mrnumber = {3491774},
     zbl = {1343.49036},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015008/}
}
TY  - JOUR
AU  - Casas, Eduardo
AU  - Kunisch, Karl
TI  - Parabolic control problems in space-time measure spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 355
EP  - 370
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015008/
DO  - 10.1051/cocv/2015008
LA  - en
ID  - COCV_2016__22_2_355_0
ER  - 
%0 Journal Article
%A Casas, Eduardo
%A Kunisch, Karl
%T Parabolic control problems in space-time measure spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 355-370
%V 22
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015008/
%R 10.1051/cocv/2015008
%G en
%F COCV_2016__22_2_355_0
Casas, Eduardo; Kunisch, Karl. Parabolic control problems in space-time measure spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 355-370. doi : 10.1051/cocv/2015008. http://archive.numdam.org/articles/10.1051/cocv/2015008/

L. Boccardo and T. Gallouet, Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149–169. | DOI | MR | Zbl

E. Casas, Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl

E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2013) 339–364. | DOI | MR | Zbl

E. Casas and E. Zuazua, Spike controls for elliptic and parabolic pde. Systems Control Lett. 62 (2013) 311–318. | DOI | MR | Zbl

E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. | DOI | MR | Zbl

E. Casas, C. Clason and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | DOI | MR | Zbl

P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis: II. Handbook of Numerical Analysis. North-Holland (1990). | MR | Zbl

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. | Numdam | MR | Zbl

E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Annali della Scuola Normale Superiore di Pisa − Classe di Scienze13 (1986) 487–535. | Numdam | MR | Zbl

L.C. Evans, Partial Differential Equations. Grad. Stud. Math. American Mathematical Society (2010). | MR

P. Grisvard, Elliptic Problems in Nonsmooth Domains. Classics Appl. Math. Society for Industrial and Applied Mathematics (1985). | MR | Zbl

R. Herzog and G. Stadler and G. Wachsmuth, Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | DOI | MR | Zbl

K. Kunisch, K. Pieper and B. Vexler, Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | DOI | MR | Zbl

O.A. Ladyzhenskaia, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society, Translations of Mathematical Monographs. American Mathematical Society (1968). | MR | Zbl

Y. Li, S. Osher and R. Tsai, Heat source identification based on l 1 constrained minimization. Inverse Probl. Imaging 8 (2014) 199–221. | DOI | MR | Zbl

K. Pieper and B. Vexler, A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51 (2013) 2788–2808. | DOI | MR | Zbl

J.P. Raymond and H. Zidani, Hamiltonian pontryagin’s principles for control problems governed by semilinear parabolic equations. Appl. Math. Optim. 39 (1999) 143–177. | DOI | MR | Zbl

A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. Part I. Global Estimates. Math. Comput. 67 (1998) 877–899. | DOI | MR | Zbl

J. Simon, Compact sets in the space L p (O,T;B). Ann. Mat. Pura Appl. 146 (1986) 65–96. | DOI | MR | Zbl

V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer Ser. Comput. Math. Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006). | MR

N. Walkington, Compactness properties of the dg and cg time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680–4710. | DOI | MR | Zbl

Cité par Sources :