In this paper we study a singular control problem for a system of PDEs describing a phase-field model of Penrose−Fife type. The main novelty of this contribution consists in the idea of forcing a sharp interface separation between the states of the system by using heat sources distributed in the domain and at the boundary. We approximate the singular cost functional with a regular one, which is based on the Legendre−Fenchel relations. Then, we obtain a regularized control problem for which we compute the first order optimality conditions using an adapted penalization technique. The proof of some convergence results and the passage to the limit in these optimality conditions lead to the characterization of the desired optimal controller.
DOI : 10.1051/cocv/2015014
Mots clés : Optimal control problems, Penrose−Fife model, sharp interface
@article{COCV_2016__22_2_473_0, author = {Colli, Pierluigi and Marinoschi, Gabriela and Rocca, Elisabetta}, title = {Sharp interface control in a {Penrose\ensuremath{-}Fife} model}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {473--499}, publisher = {EDP-Sciences}, volume = {22}, number = {2}, year = {2016}, doi = {10.1051/cocv/2015014}, mrnumber = {3491779}, zbl = {1338.49007}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2015014/} }
TY - JOUR AU - Colli, Pierluigi AU - Marinoschi, Gabriela AU - Rocca, Elisabetta TI - Sharp interface control in a Penrose−Fife model JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 473 EP - 499 VL - 22 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2015014/ DO - 10.1051/cocv/2015014 LA - en ID - COCV_2016__22_2_473_0 ER -
%0 Journal Article %A Colli, Pierluigi %A Marinoschi, Gabriela %A Rocca, Elisabetta %T Sharp interface control in a Penrose−Fife model %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 473-499 %V 22 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2015014/ %R 10.1051/cocv/2015014 %G en %F COCV_2016__22_2_473_0
Colli, Pierluigi; Marinoschi, Gabriela; Rocca, Elisabetta. Sharp interface control in a Penrose−Fife model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 473-499. doi : 10.1051/cocv/2015014. http://archive.numdam.org/articles/10.1051/cocv/2015014/
V. Barbu, Optimal Control of Variational Inequalities. In vol. 100 of Res. Notes Math. Pitman, Advanced Publishing Program, Boston, MA (1984). | MR | Zbl
V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monogr. Math. Springer, New York (2010). | MR | Zbl
Weak solutions to the Penrose−Fife phase field model for a class of admissible heat flux laws. Phys. D 111 (1998) 311–334. | DOI | MR | Zbl
and ,On a Penrose−Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. Ann. Mat. Pura Appl. 169 (1995) 269–289. | DOI | MR | Zbl
and ,Stefan problems and the Penrose−Fife phase field model. Adv. Math. Sci. Appl. 7 (1997) 911–934. | MR | Zbl
and ,P. Colli, Ph. Laurençot and J. Sprekels, Global solution to the Penrose−Fife phase field model with special heat flux laws, Variations of domain and free-boundary problems in solid mechanics (Paris, 1997) 181–188; Vol. 66. of Solid Mech. Appl. Kluwer Acad. Publ., Dordrecht (1999). | MR
Long time convergence for a class of variational phase-field models, Discrete Contin. Dyn. Syst. 25 (2009) 63–81. | DOI | MR | Zbl
, , and ,An optimal control problem for a singular system of solid-liquid transition. Numer. Funct. Anal. Optim. 31 (2010) 989–1022. | DOI | MR | Zbl
, and ,Large time behaviour of solutions to Penrose−Fife phase change models. Math. Methods Appl. Sci. 28 (2005) 2117–2132. | DOI | MR | Zbl
and ,A control problem with state constraints for a phase-field model. Control Cybernet 25 (1996) 1137–1153. | Zbl
, and ,Global existence of smooth solutions to the Penrose−Fife model for Ising ferromagnets. Adv. Math. Sci. Appl. 6 (1996) 227–241. | Zbl
, and ,Inertial set for a phase transition model of Penrose−Fife type. Adv. Math. Sci. Appl. 10 (2000) 353–374; Correction in Adv. Math. Sci. Appl. 11 (2001) 481. | Zbl
and ,Ph. Laurençot, Étude de quelques problèmes aux dérivées partielles non linéaires. Thèse de l’Université de France-Comté, Besançon (1993).
Solutions to a Penrose−Fife model of phase-field type. J. Math. Anal. Appl. 185 (1994) 262–274. | DOI | Zbl
,Weak solutions to a Penrose−Fife model for phase transitions. Adv. Math. Sci. Appl. 5 (1995) 117–138. | Zbl
,J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969). | Zbl
The Penrose−Fife phase-field model with coupled dynamic boundary conditions. Discrete Contin. Dyn. Syst. 34 (2014) 4259–4290. | DOI | Zbl
, , and ,J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris – Academia, Praha (1967). | Zbl
On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13 (1959) 115–162. | Numdam | Zbl
,Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Phys. D 43 (1990) 44–62. | DOI | Zbl
and ,On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field mode. Phys. D 69 (1993) 107–113. | DOI | Zbl
and ,Universal attractor for some singular phase transition systems. Phys. D 192 (2004) 279–307. | DOI | Zbl
and ,Global and exponential attractors for the Penrose−Fife system. Math. Models Methods Appl. Sci. 19 (2009) 969–991. | DOI | Zbl
,Asymptotic uniform boundedness of energy solutions to the Penrose−Fife model. J. Evol. Equ. 12 (2012) 863–890. | DOI | Zbl
, and ,Optimal control problems for a thermodynamically consistent model of phase-field type for phase transitions. Adv. Math. Sci. Appl. 1 (1992) 113–125. | Zbl
and ,Cité par Sources :