Absolutely continuous curves in extended Wasserstein−Orlicz spaces
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 670-687.

In this paper we extend a previous result of the author [S. Lisini, Calc. Var. Partial Differ. Eq. 28 (2007) 85–120.] on the characterization of absolutely continuous curves in Wasserstein spaces to a more general class of spaces: the spaces of probability measures endowed with the Wasserstein−Orlicz distance constructed on extended Polish spaces (in general non separable), recently considered in [L. Ambrosio, N. Gigli and G. Savaré, Invent. Math. 195 (2014) 289–391.] An application to the geodesics of this Wasserstein−Orlicz space is also given.

Reçu le :
DOI : 10.1051/cocv/2015020
Classification : 49J27, 49J52
Mots-clés : Spaces of probability measures, Wasserstein−Orlicz distance, absolutely continuous curves, superposition principle, geodesic in spaces of probability measures
Lisini, Stefano 1

1 Dipartimento di Matematica “F.Casorati”, Università degli Studi di Pavia, 27100 Pavia, Italy.
@article{COCV_2016__22_3_670_0,
     author = {Lisini, Stefano},
     title = {Absolutely continuous curves in extended {Wasserstein\ensuremath{-}Orlicz} spaces},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {670--687},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015020},
     zbl = {1348.49048},
     mrnumber = {3527938},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015020/}
}
TY  - JOUR
AU  - Lisini, Stefano
TI  - Absolutely continuous curves in extended Wasserstein−Orlicz spaces
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 670
EP  - 687
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015020/
DO  - 10.1051/cocv/2015020
LA  - en
ID  - COCV_2016__22_3_670_0
ER  - 
%0 Journal Article
%A Lisini, Stefano
%T Absolutely continuous curves in extended Wasserstein−Orlicz spaces
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 670-687
%V 22
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015020/
%R 10.1051/cocv/2015020
%G en
%F COCV_2016__22_3_670_0
Lisini, Stefano. Absolutely continuous curves in extended Wasserstein−Orlicz spaces. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 670-687. doi : 10.1051/cocv/2015020. http://archive.numdam.org/articles/10.1051/cocv/2015020/

L. Ambrosio and S. Di Marino, Equivalent definitions of BV space and of total variation on metric measure spaces. J. Funct. Anal. 266 (2014) 4150–4188. | DOI | MR | Zbl

L. Ambrosio, N. Gigli and G. Savarè, Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures. Birkhäuser (2005). | MR | Zbl

L. Ambrosio, N. Gigli and G. Savaré, Density of lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoamericana 29 (2013) 969–986. | DOI | MR | Zbl

L. Ambrosio, N. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195 (2014) 289–391. | DOI | MR | Zbl

L. Brasco and F. Santambrogio, An equivalent path functional formulation of branched transportation problems. Discrete Contin. Dyn. Syst. 29 (2011) 845–871. | DOI | MR | Zbl

A. Figalli, W. Gangbo and T. Yolcu, A variational method for a class of parabolic PDEs. Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011) 207–252. | Numdam | MR | Zbl

K. Kuwada, Gradient estimate for Markov kernels, Wasserstein control and Hopf-Lax formula. RIMS Kôkyûroku Bessatsu, B43 (2013) 61–68. | MR | Zbl

S. Lisini, Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Eq. 28 (2007) 85–120. | DOI | MR | Zbl

M.M. Rao and Z.D. Ren, Theory of Orlicz Spaces. Marcel Dekker Inc. (1991). | MR | Zbl

R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (2003) 395–431. | Numdam | Zbl

D.W. Stroock, Probability Theory. 2nd edition. Cambridge University Press (2011). | Zbl

K.T. Sturm, Generalized Orlicz spaces and Wasserstein distances for convex-concave scale functions. Bull. Sci. Math. 135 (2011) 795–802. | DOI | Zbl

Cité par Sources :