On the convexity of piecewise-defined functions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 728-742.

Functions that are piecewise defined are a common sight in mathematics while convexity is a property especially desired in optimization. Suppose now a piecewise-defined function is convex on each of its defining components – when can we conclude that the entire function is convex? In this paper we provide several convenient, verifiable conditions guaranteeing convexity (or the lack thereof). Several examples are presented to illustrate our results.

Reçu le :
DOI : 10.1051/cocv/2015023
Classification : 26B25, 52A41, 65D17, 90C25
Mots-clés : Computer-aided convex analysis, convex function, convex interpolation, convex set, piecewise-defined function
Bauschke, Heinz H. 1 ; Lucet, Yves 2 ; Phan, Hung M. 3

1 Mathematics, University of British Columbia Okanagan, Kelowna, B.C. V1V 1V7, Canada.
2 Computer Science, University of British Columbia Okanagan, Kelowna, B.C. V1V 1V7, Canada.
3 Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, M.A. 01854, USA.
@article{COCV_2016__22_3_728_0,
     author = {Bauschke, Heinz H. and Lucet, Yves and Phan, Hung M.},
     title = {On the convexity of piecewise-defined functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {728--742},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015023},
     zbl = {1356.26005},
     mrnumber = {3527941},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015023/}
}
TY  - JOUR
AU  - Bauschke, Heinz H.
AU  - Lucet, Yves
AU  - Phan, Hung M.
TI  - On the convexity of piecewise-defined functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 728
EP  - 742
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015023/
DO  - 10.1051/cocv/2015023
LA  - en
ID  - COCV_2016__22_3_728_0
ER  - 
%0 Journal Article
%A Bauschke, Heinz H.
%A Lucet, Yves
%A Phan, Hung M.
%T On the convexity of piecewise-defined functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 728-742
%V 22
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015023/
%R 10.1051/cocv/2015023
%G en
%F COCV_2016__22_3_728_0
Bauschke, Heinz H.; Lucet, Yves; Phan, Hung M. On the convexity of piecewise-defined functions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 728-742. doi : 10.1051/cocv/2015023. http://archive.numdam.org/articles/10.1051/cocv/2015023/

H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer (2011). | MR | Zbl

W. Dahmen, Convexity and Bernstein-Bézier polynomials, in Curves and surfaces (Chamonix-Mont-Blanc, 1990). Academic Press (1991) 107–134. | MR | Zbl

B. Gardiner and Y. Lucet, Computing the conjugate of convex piecewise linear-quadratic bivariate functions. Math. Program. (Series B) 139 (2013) 161–184. | DOI | MR | Zbl

B. Gardiner, K. Jakee and Y. Lucet, Computing the partial conjugate of convex piecewise linear-quadratic bivariate functions. Comput. Optim. Appl. 58 (2014) 249–272. | DOI | MR | Zbl

T.A. Grandine, On convexity of piecewise polynomial functions on triangulations. Comput. Aid. Geom. Des. 6 (1989) 181–187. | DOI | MR | Zbl

A. Li, Convexity preserving interpolation. Comput. Aid. Geom. Des. 16 (1999) 127–147. | DOI | MR | Zbl

Y. Lucet, What shape is your conjugate? A survey of computational convex analysis and its applications. SIAM Rev. 52 (2010) 505–542. | DOI | MR | Zbl

Y. Lucet, Techniques and Open Questions in Computational Convex Analysis, in Comput. Anal. Math. Springer (2013) 485–500. | MR | Zbl

M.V. Mihai and C.P. Niculescu, A simple proof of the Jensen-type inequality of Fink and Jodeit. Mediter. J. Math. 13 (2016) 119–126. | DOI | MR | Zbl

B.S. Mordukhovich and N.M. Nam, An Easy Path to Convex Analysis and Applications. Morgan & Claypool (2014). | MR | Zbl

C.P. Niculescu and I. Rovenţa, Relative convexity and its applications. Aequationes Math. 89 (2015) 1389–1400. | DOI | MR | Zbl

A.M. Oberman, The convex envelope is the solution of a nonlinear obstacle problem. Proc. of the AMS 135 (2007) 1689–1694. | DOI | MR | Zbl

R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). | MR | Zbl

R.T. Rockafellar and R.J.-B. Wets, Variational Analysis. Springer (1998). | MR | Zbl

L.L. Schumaker and H. Speleers, Convexity preserving splines over triangulations. Computer Aid. Geom. Des. 28 (2011) 270–284. | DOI | MR | Zbl

L.L. Schumaker and H. Speleers, Convexity preserving C 0 splines. Adv. Comput. Math. 40 (2014) 117–135. | DOI | MR | Zbl

J. Sun, On the structure of convex piecewise quadratic functions. J. Optim. Theor. Appl. 72 (1992) 499–510. | DOI | MR | Zbl

A. Weber and G. Reissig, Classical and strong convexity of sublevel sets and application to attainable sets of nonlinear systems. SIAM J. Control Optim. 52 (2014) 2857–2876. | DOI | MR | Zbl

C. Zălinescu, Convex Analysis in General Vector Spaces. World Scientific (2002). | MR | Zbl

Cité par Sources :