Compensator design for the monodomain equations with the FitzHugh−Nagumo model
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 241-262.

The problem of finite-dimensional compensator design for the monodomain equations with the FitzHugh−Nagumo model is investigated. Exponential stabilizability and detectability of the linearized infinite-dimensional control system is studied. It is shown that the system is not exactly null-controllable but still can be exponentially stabilized by finite-rank input and output operators provided the desired stability margin is small enough. Based on existing results on model order reduction of infinite-dimensional systems, a finite-dimensional compensator is obtained by LQG-balanced truncation. Using partial measurements, the compensator produces a feedback control that is shown to be locally stabilizing for the infinite-dimensional nonlinear control system. Examples motivated by cardiophysiology are used to illustrate these results in a numerical setup.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015047
Classification : 35K57, 93B52, 93C20, 93D15
Mots-clés : Compensator design, LQG-balanced truncation, monodomain equations, FitzHugh−Nagumo model
Breiten, Tobias 1 ; Kunisch, Karl 1, 2

1 Institute for Mathematics and Scientic Computing, Karl-Franzens-Universität, Heinrichstr. 36, 8010 Graz, Austria.
2 Altenberger Straße 69, 4040 Linz, Austria.
@article{COCV_2017__23_1_241_0,
     author = {Breiten, Tobias and Kunisch, Karl},
     title = {Compensator design for the monodomain equations with the {FitzHugh\ensuremath{-}Nagumo} model},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {241--262},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015047},
     mrnumber = {3601023},
     zbl = {1371.35153},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015047/}
}
TY  - JOUR
AU  - Breiten, Tobias
AU  - Kunisch, Karl
TI  - Compensator design for the monodomain equations with the FitzHugh−Nagumo model
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 241
EP  - 262
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015047/
DO  - 10.1051/cocv/2015047
LA  - en
ID  - COCV_2017__23_1_241_0
ER  - 
%0 Journal Article
%A Breiten, Tobias
%A Kunisch, Karl
%T Compensator design for the monodomain equations with the FitzHugh−Nagumo model
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 241-262
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015047/
%R 10.1051/cocv/2015047
%G en
%F COCV_2017__23_1_241_0
Breiten, Tobias; Kunisch, Karl. Compensator design for the monodomain equations with the FitzHugh−Nagumo model. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 241-262. doi : 10.1051/cocv/2015047. http://archive.numdam.org/articles/10.1051/cocv/2015047/

R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation, Chaos Solitons Fractals 7 (1996) 293–301. | DOI

A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. SIAM (2005). | MR | Zbl

H.T. Banks and K. Kunisch, The Linear Regulator Problem for Parabolic Systems. SIAM J. Control Optim. 22 (1984) 684–698. | DOI | MR | Zbl

P. Benner, Proc. of MathMod (2009) 126–145.

P. Benner, in Proc. of the 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations (2014) 257–262.

P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the art survey. GAMM-Mitteilungen 36 (2013) 32–52. | DOI | MR | Zbl

P. Benner and J. Heiland, LQG-balanced truncation low-order controller for stabilization of laminar flows, in Active Flow and Combustion Control 2014. Vol. 127 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, edited by R. King. Springer International Publishing (2015) 365–379.

A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter,Representation and control of infinite dimensional systems. Vol. 2. Birkhäuser Boston (1993). | MR

M.J. Bishop and G. Plank, Simulating Photon Scattering Effects in Structurally Detailed Ventricular Models Using a Monte Carlo Approach. Frontiers Physiol. 5 (2014). | DOI

A.J.B. Brandão, E. Fernández-Cara, P.M.D. Magalhães and M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Eq. (2008) 1–20. | MR | Zbl

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the FitzHugh-Nagumo model. SIAM J. Control Optim. 52 (2014) 4057–4081. | DOI | MR | Zbl

R.C. Brown and D.B. Hinton, Relative form boundedness and compactness for a second-order differential operator. J. Comput. Appl. Math. 171 (2004) 123–140. | DOI | MR | Zbl

J. Burns, E.W. Sachs and L. Zietsman, Mesh independence of Kleinman−Newton iterations for Riccati equations in Hilbert space. SIAM J. Control Optim. 47 (2008) 2663–2692. | DOI | MR | Zbl

R.F. Curtain, Finite dimensional compensators for parabolic distributed systems with unbounded control and observation. SIAM J. Control Optim. 22 (1984) 255–276. | DOI | MR | Zbl

R.F. Curtain, Model reduction for control design for distributed parameter systems. In Research Directions in Distributed Parameter Systems, edited by R.C. Smith and M. Demetriou. SIAM (2003) 95–121. | MR

R.F. Curtain and D. Salamon, Finite-dimensional compensators for infinite-dimensional systems with unbounded input operators. SIAM J. Control Optim. 24 (1986) 797–816. | DOI | MR | Zbl

R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag (2005). | Zbl

C. Guiver and M. Opmeer, Model reduction by balanced truncation for systems with nuclear Hankel operators. SIAM J. Contr. Optim. 52 (2014) 1366–1401. | DOI | MR | Zbl

T. Kato, Perturbation Theory. Birkhäuser Boston (1980).

D. Kleinman, On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13 (1968) 114–115. | DOI

M. Marletta and C. Tretter, Essential spectra of coupled systems of differential equations and applications in hydrodynamics. J. Differ. Equ. 243 (2007) 36–69. | DOI | MR | Zbl

C.C. Mitchell and D.G. Schaeffer, A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65 (2003) 767–793. | DOI | Zbl

B.F. Nielsen, T.S. Ruud, G.T. Lines and A. Tveito, Optimal monodomain approximations of the bidomain equations. Appl. Math. Comput. 184 (2007) 276–290. | DOI | MR | Zbl

M. Opmeer, LQG balancing for continuous-time infinite dimensional systems. SIAM J. Control Optim. 46 (2007) 1831–1848. | DOI | MR | Zbl

A.J. Pritchard and J. Zabczyk, Stability and stabilizability of infinite dimensional systems. SIAM Rev. 23 (1981) 25–52. | DOI | MR | Zbl

M. Puri, K.C. Chapalamadugu, A.C. Miranda, S. Gelot, W. Moreno, P.C. Adithya, C. Law and S.M. Tipparaju, Integrated approach for smart implantable cardioverter defibrillator (ICD) device with real time ECG monitoring: use of flexible sensors for localized arrhythmia sensing and stimulation. Front. Phys. 4 (2013). | DOI

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier–Stokes equations. SIAM J. Control Optim. 45 (2006) 790–828. | DOI | MR | Zbl

J.-P. Raymond, Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete Contin. Dyn. Syst. 27 (2010) 1159–1187. | DOI | MR | Zbl

J.-P. Raymond, J.-M. Buchot and J. Tiago, Coupling estimation and control for a two dimensional Burgers type equation. ESAIM: COCV 21 (2015) 535–560. | Numdam | MR | Zbl

J.M. Rogers and A.D. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41 (1994) 743–757. | DOI

D.L. Russell and G. Weiss, A general necessary condition for exact observability. SIAM J. Control Optim. 32 (1994) 1–23. | DOI | MR | Zbl

J.M. Schumacher, A direct approach to compensator design for distributed parameter sysems. SIAM J. Control Optim. 21 (1983) 823–836. | DOI | MR | Zbl

L. Thevenet, J.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two-dimensional Burgers equation. ESAIM: COCV 16 (2010) 929–955. | Numdam | MR | Zbl

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups. Birkhäuser Basel (2009). | MR | Zbl

L. Tung, A bi-domain model for describing ischemic myocardial DC potentials. Ph.D. thesis, Massachusetts Institute of Technology (1978).

G. Weiss and R. Rebarber, Optimizability and estimatability for infinite-dimensional linear systems. SIAM J. Control Optim. 39 (2000) 1204–1232. | DOI | MR | Zbl

Cité par Sources :