Optimal control problems with semilinear parabolic state equations are considered. The objective features one out of three different terms promoting various spatio-temporal sparsity patterns of the control variable. For each problem, first-order necessary optimality conditions, as well as second-order necessary and sufficient optimality conditions are proved. The analysis includes the case in which the objective does not contain the squared norm of the control.
Mots-clés : Optimal control, directional sparsity, second-order optimality conditions, semilinear parabolic equations
@article{COCV_2017__23_1_263_0, author = {Casas, Eduardo and Herzog, Roland and Wachsmuth, Gerd}, title = {Analysis of {Spatio-Temporally} {Sparse} {Optimal} {Control} {Problems} of {Semilinear} {Parabolic} {Equations}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {263--295}, publisher = {EDP-Sciences}, volume = {23}, number = {1}, year = {2017}, doi = {10.1051/cocv/2015048}, mrnumber = {3601024}, zbl = {1479.49047}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2015048/} }
TY - JOUR AU - Casas, Eduardo AU - Herzog, Roland AU - Wachsmuth, Gerd TI - Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 263 EP - 295 VL - 23 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2015048/ DO - 10.1051/cocv/2015048 LA - en ID - COCV_2017__23_1_263_0 ER -
%0 Journal Article %A Casas, Eduardo %A Herzog, Roland %A Wachsmuth, Gerd %T Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 263-295 %V 23 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2015048/ %R 10.1051/cocv/2015048 %G en %F COCV_2017__23_1_263_0
Casas, Eduardo; Herzog, Roland; Wachsmuth, Gerd. Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 263-295. doi : 10.1051/cocv/2015048. https://www.numdam.org/articles/10.1051/cocv/2015048/
J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000). | MR | Zbl
Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl
,Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50 (2012) 2355–2372. | DOI | MR | Zbl
,Optimal Control of Semilinear Elliptic Equations in Measure Spaces. SIAM J. Control Optim. 52 (2014) 339–364. | DOI | MR | Zbl
and ,
Optimality conditions and error analysis of semilinear elliptic control problems with
Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | DOI | MR | Zbl
, , and ,J. Dunn, On second order sufficient optimality conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical Programming with Data Perturbations, edited by A. Fiacco. Marcel Dekker (1998) 83–107. | MR | Zbl
R.E. Edwards, Functional analysis. Theory and applications, Corrected reprint of the 1965 original. Dover Publications Inc., New York (1995). | MR
I. Ekeland and R. Temam, Convex Analysis and Variational Problems. In vol. 28 of Classics in Applied Mathematics. SIAM, Philadelphia (1999). | MR | Zbl
Annular and sectorial sparsity in optimal control of elliptic equations. Comput. Optim. Appl. 62 (2015) 157–180. | DOI | MR | Zbl
, , and ,Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | DOI | MR | Zbl
, , and ,A.D. Ioffe and V.M. Tichomirov, Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). | MR | Zbl
Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | DOI | MR | Zbl
, , and ,J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl
Elliptic optimal control problems with
- Analysis and simulation of sparse optimal control of the monodomain model, Computers Mathematics with Applications, Volume 184 (2025), p. 29 | DOI:10.1016/j.camwa.2025.02.008
- Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints, Control and Cybernetics, Volume 53 (2025) no. 1, p. 11 | DOI:10.2478/candc-2024-003
- Temporally sparse controls for infinite horizon semilinear parabolic equations with norm constraints, Control and Cybernetics, Volume 53 (2025) no. 1, p. 11 | DOI:10.2478/candc-2024-0003
- Analysis and approximation to parabolic optimal control problems with measure-valued controls in time, ESAIM: Control, Optimisation and Calculus of Variations, Volume 31 (2025), p. 2 | DOI:10.1051/cocv/2024085
- Pattern dynamics of vegetation based on optimal control theory, Nonlinear Dynamics, Volume 113 (2025) no. 1, p. 1 | DOI:10.1007/s11071-024-10241-6
- Optimality Conditions for Sparse Optimal Control of Viscous Cahn–Hilliard Systems with Logarithmic Potential, Applied Mathematics Optimization, Volume 90 (2024) no. 2 | DOI:10.1007/s00245-024-10187-6
- Second-Order Sufficient Conditions in the Sparse Optimal Control of a Phase Field Tumor Growth Model with Logarithmic Potential, ESAIM: Control, Optimisation and Calculus of Variations, Volume 30 (2024), p. 13 | DOI:10.1051/cocv/2023084
- Sparse optimal control of Timoshenko's beam using a locking‐free finite element approximation, Optimal Control Applications and Methods, Volume 45 (2024) no. 3, p. 1007 | DOI:10.1002/oca.3085
- First- and second-order optimality conditions for the control of infinite horizon Navier–Stokes equations, Optimization (2024), p. 1 | DOI:10.1080/02331934.2024.2358406
- Optimal control of a Wilson–Cowan model of neural population dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 33 (2023) no. 4 | DOI:10.1063/5.0144682
- Error Estimates for the Numerical Approximation of Unregularized Sparse Parabolic Control Problems, Computational Methods in Applied Mathematics, Volume 23 (2023) no. 4, p. 877 | DOI:10.1515/cmam-2022-0130
- Error estimates for the numerical approximation of optimal control problems with nonsmooth pointwise-integral control constraints, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 3, p. 1485 | DOI:10.1093/imanum/drac027
- Optimal sparse boundary control of cardiac defibrillation, Nonlinear Analysis: Real World Applications, Volume 74 (2023), p. 103945 | DOI:10.1016/j.nonrwa.2023.103945
- Analysis and approximations of an optimal control problem for the Allen–Cahn equation, Numerische Mathematik, Volume 155 (2023) no. 1-2, p. 35 | DOI:10.1007/s00211-023-01374-8
- A Note on Existence of Solutions to Control Problems of Semilinear Partial Differential Equations, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 3, p. 1095 | DOI:10.1137/22m1486418
- Infinite Horizon Optimal Control Problems with Discount Factor on the State, Part II: Analysis of the Control Problem, SIAM Journal on Control and Optimization, Volume 61 (2023) no. 3, p. 1438 | DOI:10.1137/22m1490296
- , 2022 American Control Conference (ACC) (2022), p. 284 | DOI:10.23919/acc53348.2022.9867749
- Optimal Control of Semilinear Parabolic Equations with Non-smooth Pointwise-Integral Control Constraints in Time-Space, Applied Mathematics Optimization, Volume 85 (2022) no. 1 | DOI:10.1007/s00245-022-09850-7
- Optimal Control Problems with Sparsity for Tumor Growth Models Involving Variational Inequalities, Journal of Optimization Theory and Applications, Volume 194 (2022) no. 1, p. 25 | DOI:10.1007/s10957-022-02000-7
- Sparse Optimal Control of Pattern Formations for an SIR Reaction-Diffusion Epidemic Model, SIAM Journal on Applied Mathematics, Volume 82 (2022) no. 5, p. 1764 | DOI:10.1137/22m1472127
- Infinite Horizon Optimal Control Problems for a Class of Semilinear Parabolic Equations, SIAM Journal on Control and Optimization, Volume 60 (2022) no. 4, p. 2070 | DOI:10.1137/21m1464816
- Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators, Physical Review E, Volume 104 (2021) no. 2 | DOI:10.1103/physreve.104.024213
- Optimal Control of the Two-Dimensional Evolutionary Navier–Stokes Equations with Measure Valued Controls, SIAM Journal on Control and Optimization, Volume 59 (2021) no. 3, p. 2223 | DOI:10.1137/20m1351400
- Adaptive finite element methods for sparse PDE-constrained optimization, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 3, p. 2106 | DOI:10.1093/imanum/drz025
- Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints, Journal de Mathématiques Pures et Appliquées, Volume 138 (2020), p. 46 | DOI:10.1016/j.matpur.2020.03.006
- First and Second Order Conditions for Optimal Control Problems with an
Term in the Cost Functional, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 6, p. 3486 | DOI:10.1137/20m1318377 - Critical Cones for Sufficient Second Order Conditions in PDE Constrained Optimization, SIAM Journal on Optimization, Volume 30 (2020) no. 1, p. 585 | DOI:10.1137/19m1258244
- An a posteriori error analysis of an elliptic optimal control problem in measure space, Computers Mathematics with Applications, Volume 77 (2019) no. 10, p. 2659 | DOI:10.1016/j.camwa.2018.12.043
- A Hybrid Finite-Dimensional RHC for Stabilization of Time-Varying Parabolic Equations, SIAM Journal on Control and Optimization, Volume 57 (2019) no. 5, p. 3496 | DOI:10.1137/19m1239787
- Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity, Computational Optimization and Applications, Volume 70 (2018) no. 1, p. 239 | DOI:10.1007/s10589-018-9979-0
- Finite element approximation of sparse parabolic control problems, Mathematical Control Related Fields, Volume 7 (2017) no. 3, p. 393 | DOI:10.3934/mcrf.2017014
- Stabilization by Sparse Controls for a Class of Semilinear Parabolic Equations, SIAM Journal on Control and Optimization, Volume 55 (2017) no. 1, p. 512 | DOI:10.1137/16m1084298
- A review on sparse solutions in optimal control of partial differential equations, SeMA Journal, Volume 74 (2017) no. 3, p. 319 | DOI:10.1007/s40324-017-0121-5
Cité par 33 documents. Sources : Crossref