Optimal control problems with semilinear parabolic state equations are considered. The objective features one out of three different terms promoting various spatio-temporal sparsity patterns of the control variable. For each problem, first-order necessary optimality conditions, as well as second-order necessary and sufficient optimality conditions are proved. The analysis includes the case in which the objective does not contain the squared norm of the control.
Mots-clés : Optimal control, directional sparsity, second-order optimality conditions, semilinear parabolic equations
@article{COCV_2017__23_1_263_0, author = {Casas, Eduardo and Herzog, Roland and Wachsmuth, Gerd}, title = {Analysis of {Spatio-Temporally} {Sparse} {Optimal} {Control} {Problems} of {Semilinear} {Parabolic} {Equations}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {263--295}, publisher = {EDP-Sciences}, volume = {23}, number = {1}, year = {2017}, doi = {10.1051/cocv/2015048}, mrnumber = {3601024}, zbl = {1479.49047}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2015048/} }
TY - JOUR AU - Casas, Eduardo AU - Herzog, Roland AU - Wachsmuth, Gerd TI - Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 263 EP - 295 VL - 23 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2015048/ DO - 10.1051/cocv/2015048 LA - en ID - COCV_2017__23_1_263_0 ER -
%0 Journal Article %A Casas, Eduardo %A Herzog, Roland %A Wachsmuth, Gerd %T Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 263-295 %V 23 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2015048/ %R 10.1051/cocv/2015048 %G en %F COCV_2017__23_1_263_0
Casas, Eduardo; Herzog, Roland; Wachsmuth, Gerd. Analysis of Spatio-Temporally Sparse Optimal Control Problems of Semilinear Parabolic Equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 263-295. doi : 10.1051/cocv/2015048. http://archive.numdam.org/articles/10.1051/cocv/2015048/
J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems. Springer Series in Operations Research. Springer-Verlag, New York (2000). | MR | Zbl
Pontryagin’s principle for state-constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. | DOI | MR | Zbl
,Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50 (2012) 2355–2372. | DOI | MR | Zbl
,Optimal Control of Semilinear Elliptic Equations in Measure Spaces. SIAM J. Control Optim. 52 (2014) 339–364. | DOI | MR | Zbl
and ,Optimality conditions and error analysis of semilinear elliptic control problems with cost functional. SIAM J. Optim. 22 (2012) 795–820. | DOI | MR | Zbl
, , and ,Parabolic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 51 (2013) 28–63. | DOI | MR | Zbl
, , and ,J. Dunn, On second order sufficient optimality conditions for structured nonlinear programs in infinite-dimensional function spaces, in Mathematical Programming with Data Perturbations, edited by A. Fiacco. Marcel Dekker (1998) 83–107. | MR | Zbl
R.E. Edwards, Functional analysis. Theory and applications, Corrected reprint of the 1965 original. Dover Publications Inc., New York (1995). | MR
I. Ekeland and R. Temam, Convex Analysis and Variational Problems. In vol. 28 of Classics in Applied Mathematics. SIAM, Philadelphia (1999). | MR | Zbl
Annular and sectorial sparsity in optimal control of elliptic equations. Comput. Optim. Appl. 62 (2015) 157–180. | DOI | MR | Zbl
, , and ,Directional sparsity in optimal control of partial differential equations. SIAM J. Control Optim. 50 (2012) 943–963. | DOI | MR | Zbl
, , and ,A.D. Ioffe and V.M. Tichomirov, Theorie der Extremalaufgaben. VEB Deutscher Verlag der Wissenschaften, Berlin (1979). | MR | Zbl
Measure valued directional sparsity for parabolic optimal control problems. SIAM J. Control Optim. 52 (2014) 3078–3108. | DOI | MR | Zbl
, , and ,J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Editeurs Academia, Prague (1967). | MR | Zbl
Elliptic optimal control problems with -control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. | DOI | MR | Zbl
,Cité par Sources :