Uniform estimates for a Modica–Mortola type approximation of branched transportation
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 309-335.

Models for branched networks are often expressed as the minimization of an energy M α over vector measures concentrated on 1-dimensional rectifiable sets with a divergence constraint. We study a Modica–Mortola type approximation M α ε , introduced by Edouard Oudet and Filippo Santambrogio, which is defined over H 1 vector measures. These energies induce some pseudo-distances between L 2 functions obtained through the minimization problem min{M α ε (u): ·u=f + -f - }. We prove some uniform estimates on these pseudo-distances which allow us to establish a Γ-convergence result for these energies with a divergence constraint.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015049
Classification : 49J45, 90B06, 90B18
Mots-clés : Branched transportation networks, Γ-convergence, phase field models
Monteil, Antonin 1

1 Laboratoire de Mathématiques d’Orsay, Université Paris-Sud 11, Bât. 425, 91405 Orsay, France.
@article{COCV_2017__23_1_309_0,
     author = {Monteil, Antonin},
     title = {Uniform estimates for a {Modica{\textendash}Mortola} type approximation of branched transportation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {309--335},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015049},
     mrnumber = {3601026},
     zbl = {1385.49006},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015049/}
}
TY  - JOUR
AU  - Monteil, Antonin
TI  - Uniform estimates for a Modica–Mortola type approximation of branched transportation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 309
EP  - 335
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015049/
DO  - 10.1051/cocv/2015049
LA  - en
ID  - COCV_2017__23_1_309_0
ER  - 
%0 Journal Article
%A Monteil, Antonin
%T Uniform estimates for a Modica–Mortola type approximation of branched transportation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 309-335
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015049/
%R 10.1051/cocv/2015049
%G en
%F COCV_2017__23_1_309_0
Monteil, Antonin. Uniform estimates for a Modica–Mortola type approximation of branched transportation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 309-335. doi : 10.1051/cocv/2015049. http://archive.numdam.org/articles/10.1051/cocv/2015049/

M. Bernot, V. Caselles and J.-M. Morel, T. plans. Publ. Mat. 49 (2005) 417–451. | DOI | MR | Zbl

M. Bernot, V. Caselles and J.-M. Morel, The structure of branched transportation networks. Calc. Var. Partial Differ. Eq. 32 (2008) 279–317. | DOI | MR | Zbl

M. Bernot, V. Caselles and J.-M. Morel, Optimal transportation networks: models and theory. Vol. 1955. Springer Science & Business Media (2009). | MR | Zbl

F. Bethuel, A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces. Preprint (2014). | arXiv | MR

G. Bouchitté and P. Seppecher, Cahn and Hilliard fluid on an oscillating boundary. In Motion by mean curvature and related topics (Trento, 1992). De Gruyter, Berlin (1994) 23–42. | MR | Zbl

G. Bouchitté, C. Dubs and P. Seppecher, Transitions de phases avec un potentiel dégénéré à l’infini, application à l’équilibre de petites gouttes. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 1103–1108. | MR | Zbl

J. Bourgain and H. Brezis, On the equation divY=f and application to control of phases. J. Amer. Math. Soc. 16 (2003) 393–426. | DOI | MR | Zbl

A. Braides, Γ-convergence for beginners. Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

L. Brasco, G. Buttazzo and F. Santambrogio, A Benamou-Brenier approach to branched transport. SIAM J. Math. Anal. 43 (2011) 1023–1040. | DOI | MR | Zbl

J.W. Cahn and J.E. Hilliard, Free energy of a nonuniform system. i. interfacial free energy. J. Chem. Phys. 28 (1958) 258–267. | DOI | Zbl

G. Dal Maso, An introduction to Γ-convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). | MR | Zbl

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842–850. | MR | Zbl

C. Dubs, Problèmes de perturbations singulières avec un potentiel dégénéré à l’infini. Ph.D. thesis, Université de Toulon et du Var (1998).

E.N. Gilbert, Minimum cost communication networks. Bell Syst. Tech. J. 46 (1967) 2209–2227. | DOI

F. Maddalena, S. Solimini and J.-M. Morel, A variational model of irrigation patterns. Interfaces Free Bound. 5 (2003) 391–415. | DOI | MR | Zbl

L. Modica and S. Mortola, Un esempio di γ-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. | MR | Zbl

J.-M. Morel and F. Santambrogio, Comparison of distances between measures. Appl. Math. Lett. 20 (2007) 427–432. | DOI | MR | Zbl

E. Oudet and F. Santambrogio, A Modica–Mortola approximation for branched transport and applications. Arch. Ration. Mech. Anal. 201 (2011) 115–142. | DOI | MR | Zbl

P. Pegon, Equivalence between branched transport models by Smirnov decomposition. To appear in RICAM (2017).

F. Santambrogio, A Modica–Mortola approximation for branched transport. C. R. Math. Acad. Sci. Paris 348 (2010) 941–945. | DOI | MR | Zbl

F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs and modeling. Vol. 87 (2015). | MR

C. Villani, Topics in optimal transportation. Number 58 in Graduate Studies in Mathematics. American Mathematical Society, cop. (2003). | MR | Zbl

Q. Xia, Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. | DOI | MR | Zbl

Q. Xia, Interior regularity of optimal transport paths. Calc. Var. Partial Differ. Eq. 20 (2004) 283–299. | DOI | MR | Zbl

Cité par Sources :