A shape optimization problem for Steklov eigenvalues in oscillating domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 373-390.

In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015050
Classification : 35P30, 35J92, 49R05
Mots-clés : Shape optimization, Steklov eigenvalues, gamma convergence, oscillating domains
Bonder, Julián Fernández 1 ; Spedaletti, Juan F. 2

1 Departamento de Matemática FCEN – Universidad de Buenos Aires and IMAS – CONICET. Ciudad Universitaria, Pabellón I (C1428EGA) Av. Cantilo 2160, Buenos Aires, Argentina
2 Departamento de Matemática, Universidad Nacional de San Luis and IMASL – CONICET. Ejército de los Andes 950 (D5700HHW), San Luis, Argentina.
@article{COCV_2017__23_2_373_0,
     author = {Bonder, Juli\'an Fern\'andez and Spedaletti, Juan F.},
     title = {A shape optimization problem for {Steklov} eigenvalues in oscillating domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {373--390},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2015050},
     mrnumber = {3608085},
     zbl = {1362.35198},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015050/}
}
TY  - JOUR
AU  - Bonder, Julián Fernández
AU  - Spedaletti, Juan F.
TI  - A shape optimization problem for Steklov eigenvalues in oscillating domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 373
EP  - 390
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015050/
DO  - 10.1051/cocv/2015050
LA  - en
ID  - COCV_2017__23_2_373_0
ER  - 
%0 Journal Article
%A Bonder, Julián Fernández
%A Spedaletti, Juan F.
%T A shape optimization problem for Steklov eigenvalues in oscillating domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 373-390
%V 23
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015050/
%R 10.1051/cocv/2015050
%G en
%F COCV_2017__23_2_373_0
Bonder, Julián Fernández; Spedaletti, Juan F. A shape optimization problem for Steklov eigenvalues in oscillating domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 373-390. doi : 10.1051/cocv/2015050. http://archive.numdam.org/articles/10.1051/cocv/2015050/

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence, RI (2011). | MR | Zbl

A. Braides, Γ-convergence for beginners, Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

D. Cioranescu and F. Murat, A strange term coming from nowhere. In Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 45–93. | MR | Zbl

G. Dal Maso, An introduction to Γ-convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). | MR | Zbl

L. Del Pezzo, J. Fernández Bonder and W. Neves, Optimal boundary holes for the Sobolev trace constant. J. Differ. Eq. 251 (2011) 2327–2351. | DOI | MR | Zbl

J. Denzler, Windows of given area with minimal heat diffusion. Trans. Amer. Math. Soc. 351 (1999) 569–580. | DOI | MR | Zbl

J. Fernández Bonder, P. Groisman and J.D. Rossi, Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach. Ann. Mat. Pura Appl. 186 (2007) 341–358. | DOI | MR | Zbl

J. Fernández Bonder, R. Orive and J.D. Rossi, The best Sobolev trace constant in a domain with oscillating boundary. Nonlinear Anal. 67 (2007) 1173–1180. | DOI | MR | Zbl

J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263 (2001) 195–223. | DOI | MR | Zbl

A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique (A geometric analysis). Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). | MR | Zbl

E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Vol. 12 of Lect. Notes Phys. Springer-Verlag, Berlin, New York (1980). | MR | Zbl

J. Simon, Régularité de la solution d’une équation non linéaire dans 𝐑 N . Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977). Vol. 665 of Lect. Notes Math. Springer, Berlin (1978) 205–227. | MR | Zbl

Cité par Sources :