A shape optimization problem for Steklov eigenvalues in oscillating domains
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 373-390.

In this paper we study the asymptotic behavior of some optimal design problems related to nonlinear Steklov eigenvalues, under irregular (but diffeomorphic) perturbations of the domain.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015050
Classification : 35P30, 35J92, 49R05
Mots-clés : Shape optimization, Steklov eigenvalues, gamma convergence, oscillating domains
Bonder, Julián Fernández 1 ; Spedaletti, Juan F. 2

1 Departamento de Matemática FCEN – Universidad de Buenos Aires and IMAS – CONICET. Ciudad Universitaria, Pabellón I (C1428EGA) Av. Cantilo 2160, Buenos Aires, Argentina
2 Departamento de Matemática, Universidad Nacional de San Luis and IMASL – CONICET. Ejército de los Andes 950 (D5700HHW), San Luis, Argentina.
@article{COCV_2017__23_2_373_0,
     author = {Bonder, Juli\'an Fern\'andez and Spedaletti, Juan F.},
     title = {A shape optimization problem for {Steklov} eigenvalues in oscillating domains},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {373--390},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2015050},
     mrnumber = {3608085},
     zbl = {1362.35198},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2015050/}
}
TY  - JOUR
AU  - Bonder, Julián Fernández
AU  - Spedaletti, Juan F.
TI  - A shape optimization problem for Steklov eigenvalues in oscillating domains
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 373
EP  - 390
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2015050/
DO  - 10.1051/cocv/2015050
LA  - en
ID  - COCV_2017__23_2_373_0
ER  - 
%0 Journal Article
%A Bonder, Julián Fernández
%A Spedaletti, Juan F.
%T A shape optimization problem for Steklov eigenvalues in oscillating domains
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 373-390
%V 23
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2015050/
%R 10.1051/cocv/2015050
%G en
%F COCV_2017__23_2_373_0
Bonder, Julián Fernández; Spedaletti, Juan F. A shape optimization problem for Steklov eigenvalues in oscillating domains. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 373-390. doi : 10.1051/cocv/2015050. https://www.numdam.org/articles/10.1051/cocv/2015050/

A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Corrected reprint of the 1978 original. AMS Chelsea Publishing, Providence, RI (2011). | MR | Zbl

A. Braides, Γ-convergence for beginners, Vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). | MR | Zbl

D. Cioranescu and F. Murat, A strange term coming from nowhere. In Topics in the Mathematical Modelling of Composite Materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston, Boston, MA (1997) 45–93. | MR | Zbl

G. Dal Maso, An introduction to Γ-convergence. Vol. 8 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (1993). | MR | Zbl

L. Del Pezzo, J. Fernández Bonder and W. Neves, Optimal boundary holes for the Sobolev trace constant. J. Differ. Eq. 251 (2011) 2327–2351. | DOI | MR | Zbl

J. Denzler, Windows of given area with minimal heat diffusion. Trans. Amer. Math. Soc. 351 (1999) 569–580. | DOI | MR | Zbl

J. Fernández Bonder, P. Groisman and J.D. Rossi, Optimization of the first Steklov eigenvalue in domains with holes: a shape derivative approach. Ann. Mat. Pura Appl. 186 (2007) 341–358. | DOI | MR | Zbl

J. Fernández Bonder, R. Orive and J.D. Rossi, The best Sobolev trace constant in a domain with oscillating boundary. Nonlinear Anal. 67 (2007) 1173–1180. | DOI | MR | Zbl

J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263 (2001) 195–223. | DOI | MR | Zbl

A. Henrot and M. Pierre, Variation et optimisation de formes. Une analyse géométrique (A geometric analysis). Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). | MR | Zbl

E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Vol. 12 of Lect. Notes Phys. Springer-Verlag, Berlin, New York (1980). | MR | Zbl

J. Simon, Régularité de la solution d’une équation non linéaire dans 𝐑N. Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977). Vol. 665 of Lect. Notes Math. Springer, Berlin (1978) 205–227. | MR | Zbl

Cité par Sources :