Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation
ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 1184-1203.

In this paper, we consider the controllability of a strongly degenerate parabolic equation with a degenerate one-order transport term. Despite the strong degeneracy, we prove a result of well-posedness and null controllability with a Dirichlet boundary control that acts on the degenerate part of the boundary. Then, we study the uniform controllability in the vanishing viscosity limit and prove that the cost of the control explodes exponentially fast in small time and converges exponentially fast in large time in some adapted weighted norm. The main tools used are a spectral decomposition involving Bessel functions and their zeros, some usual results on admissibility of scalar controls for diagonal semigroups, and the moment method of Fattorini and Russell.

Received:
Accepted:
DOI: 10.1051/cocv/2016036
Classification: 35K65, 93B05, 30E05
Mots-clés : Degenerate parabolic equation, cost of the control, uniform controllability, Bessel functions
Gueye, Mamadou 1; Lissy, Pierre 2

1 Departamento de Matematica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso, Chile.
2 CEREMADE, UMR 7534, Université Paris-Dauphine & CNRS, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France.
@article{COCV_2016__22_4_1184_0,
     author = {Gueye, Mamadou and Lissy, Pierre},
     title = {Singular optimal control of a {1-D} parabolic-hyperbolic degenerate equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1184--1203},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016036},
     zbl = {1357.35202},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016036/}
}
TY  - JOUR
AU  - Gueye, Mamadou
AU  - Lissy, Pierre
TI  - Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1184
EP  - 1203
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016036/
DO  - 10.1051/cocv/2016036
LA  - en
ID  - COCV_2016__22_4_1184_0
ER  - 
%0 Journal Article
%A Gueye, Mamadou
%A Lissy, Pierre
%T Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1184-1203
%V 22
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016036/
%R 10.1051/cocv/2016036
%G en
%F COCV_2016__22_4_1184_0
Gueye, Mamadou; Lissy, Pierre. Singular optimal control of a 1-D parabolic-hyperbolic degenerate equation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 1184-1203. doi : 10.1051/cocv/2016036. http://archive.numdam.org/articles/10.1051/cocv/2016036/

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs and mathematical tables. Vol. 55 of Appl. Math. Series. National Bureau of Standards (1964). | Zbl

L. Ambrosio, Transport equation and Cauchy Problem for BV vector fields. Invent. Math. 158 (2004) 227–260. | DOI | Zbl

S.A. Avdonin and S.A. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. Cambridge University Press, Cambridge New York (1995). | Zbl

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47 (2008) 1–19. | DOI | Zbl

P. Cannarsa, J. Tort and M. Yamamoto, Unique continuation and approximate controllability for a degenerate parabolic equation. Appl. Anal. 91 (2012) 1409–1425. | DOI | Zbl

N. Carreno and S. Guerrero, On the non-uniform null controllability of a linear KdV equation. Asymptot. Anal. 94 (2015) 33–69. | Zbl

J.-M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237–257. | Zbl

R.J. Diperna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | Zbl

H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Ration. Mech. Anal. 43 (1971) 272–292. | DOI | Zbl

A.V. Fursikov and O.Y. Imanuvilov, Controllability of Evolution Equations. Vol. 34 of Lecture Notes. Seoul National University, Korea (1996). | Zbl

O. Glass, A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852–868. | DOI | Zbl

O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation. SIAM J. Control Optim. 46 (2007) 1211–1238. | DOI | Zbl

O. Glass and S. Guerrero, Uniform controllability of a transport equation in zero diffusion-dispersion limit. Math. Models Methods Appl. Sci. 19 (2009) 1567–1601. | DOI | Zbl

S. Guerrero and G. Lebeau, Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Eq. 32 (2007) 1813–1836. | DOI | Zbl

M. Gueye, Exact boundary controllability of 1-D parabolic and hyperbolic equations. SIAM J. Control Optim. 52 (2014) 2037–2054. | DOI | Zbl

L.F. Ho and D.L. Russell, Admissible Input Elements for Systems in Hilbert Space and a Carleson Measure Criterion. SIAM J. Control Optim. 21 614–640. | Zbl

E. Kamke, Differentialgleichungen: L’sungsmethoden und l’sungen, 3rd edition. Chelsea Publishing Company, New York (1948). | Zbl

G. Lebeau and L. Robbiano, Controle exact de l’équation de la chaleur. Commun. Partial Differ. Eq. 20 (1995) 335–356. | Zbl

V. Komornik and P. Loreti, Fourier series in control theory. Springer (2005). | Zbl

M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM, J. Control Optim. 50 (2012) 1661–1699. | Zbl

P. Lissy, A link between the cost of fast controls for the 1-D heat equation and the uniform controllability of a 1-D transport-diffusion equation. C. R. Math. Acad. Sci. Paris 350 (2012) 591–595. | DOI | MR | Zbl

P. Lissy, An application of a conjecture due to Ervedoza and Zuazua concerning the observability of the heat equation in small time to a conjecture due to Coron and Guerrero concerning the uniform controllability of a convection-diffusion equation in the vanishing viscosity limit. Syst. Control Lett. 69 (2014) 98–102. | Zbl

P. Lissy, On the Cost of Fast Controls for Some Families of Dispersive or Parabolic Equations in One Space Dimension. SIAM J. Control Optim. 52 (2014) 2651–2676. | Zbl

P. Lissy, Explicit lower bounds for the cost of fast controls for some 1-D parabolic or dispersive equations, and a new lower bound concerning the uniform controllability of the 1-D transport-diffusion equation. J. Differ. Equ. 259 (2015) 5331–5352. | Zbl

J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Springer, Berlin (1972). | Zbl

L. Lorch and M.E. Muldoon, Monotonic sequences related to zeros of Bessel functions. Numer. Algor. 49 (2008) 221–233. | Zbl

P. Koosis, The logarithmic integral I & II. Vol. 12 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1988) and Vol. 21 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1992). | Zbl

G. Metafune and D. Pallara, Trace Formulas for Some Singular Differential Operators and Applications. Math. Nachr. 211 (2000) 127–157. | DOI | Zbl

W. Rudin, Real and complex analysis. McGraw-Hill Book Co., New York (1966). | Zbl

H. Tanabe, Equations of evolution [English transl., Iwanami, Tokyo (1975)]. Pitman, London (1979). | Zbl

G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrodinger and heat equations. J. Differ. Equ. 243 (2007) 70–100. | DOI | Zbl

G.N. Watson, A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge, England (1958). | Zbl

Cited by Sources: