Lagrangian controllability of inviscid incompressible fluids: a constructive approach
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1179-1200.

We present here a constructive method of Lagrangian approximate controllability for the Euler equation. We emphasize on different options that could be used for numerical recipes: either, in the case of a bi-dimensionnal fluid, the use of formal computations in the framework of explicit Runge approximations of holomorphic functions by rational functions, or an approach based on the study of the range of an operator by showing a density result. For this last insight in view of numerical simulations in progress, we analyze through a simplified problem the observed instabilities.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016043
Classification : 35J05, 35Q93, 32E30, 76B75
Mots clés : Euler equation, Lagrangian controllability
Horsin, Thierry 1 ; Kavian, Otared 2

1 CNAM, Laboratoire M2N EA7340, 292 rue Saint-Martin, Case 2D5000, 75003 Paris, France.
2 Université de Versailles Saint-Quentin; Laboratoire de Mathématiques de Versailles (UMR 8100), 45 avenue des Etats-Unis 78030 Versailles cedex, France.
@article{COCV_2017__23_3_1179_0,
     author = {Horsin, Thierry and Kavian, Otared},
     title = {Lagrangian controllability of inviscid incompressible fluids: a constructive approach},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1179--1200},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016043},
     mrnumber = {3660464},
     zbl = {1371.35031},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016043/}
}
TY  - JOUR
AU  - Horsin, Thierry
AU  - Kavian, Otared
TI  - Lagrangian controllability of inviscid incompressible fluids: a constructive approach
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1179
EP  - 1200
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016043/
DO  - 10.1051/cocv/2016043
LA  - en
ID  - COCV_2017__23_3_1179_0
ER  - 
%0 Journal Article
%A Horsin, Thierry
%A Kavian, Otared
%T Lagrangian controllability of inviscid incompressible fluids: a constructive approach
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1179-1200
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016043/
%R 10.1051/cocv/2016043
%G en
%F COCV_2017__23_3_1179_0
Horsin, Thierry; Kavian, Otared. Lagrangian controllability of inviscid incompressible fluids: a constructive approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 1179-1200. doi : 10.1051/cocv/2016043. http://archive.numdam.org/articles/10.1051/cocv/2016043/

Ch. B. Morrey Jr., Multiple integrals in the calculus of variations. Classics in Mathematics. Reprint of the 1966 edition [MR0202511]. Springer-Verlag, Berlin (2008). | MR | Zbl

J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Syst. 5 (1992) 295–312. | DOI | MR | Zbl

O. Glass and Th. Horsin, Approximate lagrangian controllability for the 2-d euler equations. application to the control of the shape of vortex patch. J. Math. Pures Appl. 93 (2010) 61–90. | DOI | MR | Zbl

O. Glass and Th. Horsin, Prescribing the motion of a set of particles in a three-dimensional perfect fluid. SIAM J. Control Optim. 50 (2012) 2726–2742. | DOI | MR | Zbl

L. Hörmander, The Analysis of linear Partial differential operators. I, 2nd edition. Vol. 256 of A Series of Comprehensive Studies in Mathematics. Springer-Verlag, Berlin (1990). | Zbl

J. Louis Lions, Problèmes aux limites dans les équations aux dérivées partielles. Université de Montréal, Montréal (1968). | Zbl

W. Rudin, Functional analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973). | MR | Zbl

D. Sarason, Notes on Complex Function Theory. AMS (1994). | MR | Zbl

K. Yosida, Functional Analysis. Springer Verlag, Berlin, Heidelberg, New York (1980). | MR | Zbl

Cité par Sources :