Integral representation results in BV×L p
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1555-1599.

Integral representation results are obtained for the relaxation of some classes of energy functionals depending on two vector fields with different behaviors, which may appear in the context of image decomposition and thermochemical equilibrium problems.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016065
Classification : 49J45, 74Q05
Mots-clés : Relaxation, convexity-quasiconvexity, functions of bounded variation
Carita, Graça 1 ; Zappale, Elvira 2

1 CIMA-UE, Departamento de Matemática, Universidade de Évora, Rua Romão Ramalho, 59 7000 671 Évora, Portugal.
2 D.I.In., Universita’ degli Studi di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy.
@article{COCV_2017__23_4_1555_0,
     author = {Carita, Gra\c{c}a and Zappale, Elvira},
     title = {Integral representation results in $BV \times{} L^{p}$},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1555--1599},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016065},
     zbl = {1381.49007},
     mrnumber = {3716933},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016065/}
}
TY  - JOUR
AU  - Carita, Graça
AU  - Zappale, Elvira
TI  - Integral representation results in $BV \times{} L^{p}$
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1555
EP  - 1599
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016065/
DO  - 10.1051/cocv/2016065
LA  - en
ID  - COCV_2017__23_4_1555_0
ER  - 
%0 Journal Article
%A Carita, Graça
%A Zappale, Elvira
%T Integral representation results in $BV \times{} L^{p}$
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1555-1599
%V 23
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016065/
%R 10.1051/cocv/2016065
%G en
%F COCV_2017__23_4_1555_0
Carita, Graça; Zappale, Elvira. Integral representation results in $BV \times{} L^{p}$. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1555-1599. doi : 10.1051/cocv/2016065. http://archive.numdam.org/articles/10.1051/cocv/2016065/

E. Acerbi and N. Fusco, Semicontinuity problems in the Calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125–145. | DOI | MR | Zbl

G. Alberti, Rank one property for derivatives of functions with bounded variation. Proc. R. Soc. Edinb. Sect. A 123 (1993) 239–274. | DOI | MR | Zbl

L. Ambrosio and G. Dal Maso, On the Relaxation in BV(Ω;R m ) of Quasi-convex Integrals. J. Funct. Anal. 109 (1992) 76–97. | DOI | MR | Zbl

J.-F. Aujol, G. Aubert, L. Blanc-Feraud and A. Chambolle, Image Decomposition into a Bounded Variation Component and an Oscillating Component. J. Math. Imaging and Vision 22 (2005) 71–88. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). | MR | Zbl

L. Ambrosio, S. Mortola and V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions. J. Math. Pures Appl., IX. Sér. 70 (1991) 269–323. | MR | Zbl

J.F. Babadjian, E. Zappale and H. Zorgati, Dimensional reduction for energies with linear growth involving the bending moment. J. Math. Pures Appl. 90 (2008) 520–549. | DOI | MR | Zbl

S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 7 (1990) 67–90. | DOI | Numdam | MR | Zbl

J. Ball and A. Zarnescu, Partial regularity and smooth topology-preserving approximations of rough domains, . | arXiv

A.C. Barroso and I. Fonseca, Anisotropic singular perturbations-the vectorial case, Proc. Royal Soc. Edinb. A 124 (1994) 527–571. | MR | Zbl

G. Bouchitté, I. Fonseca and L. Mascarenhas, Bending moment in membrane theory. J. Elasticity 73 (2003) 75–99. | MR | Zbl

G. Carita, A.M. Ribeiro and E. Zappale, An homogenization result in W 1,p ×L q . J. Convex Anal. 18 (2011) 1093–1126. | MR | Zbl

I. Fonseca, G. Francfort and G. Leoni, Thin elastic films: the impact of higher order perturbations.Quart. Appl. Math. 65 (2007) 69–98. | MR | Zbl

I. Fonseca, D. Kinderlehrer and P. Pedregal, Relaxation in BV×L of functionals depending on strain and composition, Lions, edited by Jacques-Louis et al., Boundary value problems for partial differential equations and applications. Dedicated to Enrico Magenes on the occasion of his 70th birthday. Paris: Masson. Res. Notes Appl. Math. 29 (1993) 113–152. | MR | Zbl

I. Fonseca, D. Kinderlehrer and P. Pedregal, Energy functionals depending on elastic strain and chemical composition. Calc. Var. Partial Differential Equations 2 (1994) 283–313. | MR | Zbl

I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: L p spaces. Springer Verlag (2007). | MR | Zbl

I. Fonseca and S. Müller, Quasiconvex integrands and Lower Semicontinuity in L 1 . Siam. J. Math. Anal. 23 (1992) 1081–1098. | MR | Zbl

I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in BV(Ω;R p ) for integrands f(x,u,u). Arch. Rational Mech. Anal. 123 (1993) 1–49. | DOI | MR | Zbl

I. Fonseca and P. Rybka, Relaxation of multiple integrals in the space BV(Ω;R p ). Proc. Roy. Soc. Edinburgh A 121 (1992) 321–348. | DOI | MR | Zbl

H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Ration. Mech. Anal. 154 (2000) 101–134. | DOI | MR | Zbl

Y. Meyer, Oscillating pattern in image processing and nonlinear evolution equations. The fifteenth Dean Jacqueline B. Lewis memorial lectures. Vol. 22 of University Lecture Series. Providence, RI. American Mathematical Society (AMS) (2001). | MR | Zbl

A.M. Ribeiro and E. Zappale, Relaxation of Certain Integral Functionals Depending on Strain and Chemical Composition. Chin. Ann. Math. 34B (2013) 491–514. | DOI | MR | Zbl

A.M. Ribeiro and E. Zappale, Lower semicontinuous envelopes in W 1,1 ×L p . Banach Center Publications 101 (2014) 187–206. | DOI | MR | Zbl

A.M. Ribeiro and E. Zappale, Erratum: Lower semicontinuous envelopes in W 1,1 ×L p 101 (2014), online.

L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D 60 (1992) 259–268. | DOI | MR | Zbl

E.M. Stein, Singular integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). | MR | Zbl

L.A. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19 (2003) 553–572. | DOI | MR | Zbl

L.A. Vese and S. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions. J. Math. Imaging Vision 20 (2004) 7–18. | DOI | MR | Zbl

Cité par Sources :