On contact sub-pseudo-Riemannian isometries
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1751-1765.

We study isometries in contact sub-pseudo-Riemannian geometry. In particular we give an upper bound on the dimension of the isometry group of a general sub-pseudo-Riemannian manifold and prove that the maximal dimension is attained for the left invariant structures on the Heisenberg group.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016072
Classification : 53C17, 34H05
Mots-clés : Contact structure, sub-Riemannian geometry, sub-Lorentzian geometry, Heisenberg group, isometry group, control-affine systems
Grochowski, Marek 1 ; Kryński, Wojciech 2

1 Faculty of Mathematics and Natural Sciences, Cardinal Wyszyński University, 01-938 Warszawa, Poland.
2 Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warszawa, Poland.
@article{COCV_2017__23_4_1751_0,
     author = {Grochowski, Marek and Kry\'nski, Wojciech},
     title = {On contact {sub-pseudo-Riemannian} isometries},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1751--1765},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {4},
     year = {2017},
     doi = {10.1051/cocv/2016072},
     mrnumber = {3716939},
     zbl = {1379.53044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016072/}
}
TY  - JOUR
AU  - Grochowski, Marek
AU  - Kryński, Wojciech
TI  - On contact sub-pseudo-Riemannian isometries
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1751
EP  - 1765
VL  - 23
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016072/
DO  - 10.1051/cocv/2016072
LA  - en
ID  - COCV_2017__23_4_1751_0
ER  - 
%0 Journal Article
%A Grochowski, Marek
%A Kryński, Wojciech
%T On contact sub-pseudo-Riemannian isometries
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1751-1765
%V 23
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016072/
%R 10.1051/cocv/2016072
%G en
%F COCV_2017__23_4_1751_0
Grochowski, Marek; Kryński, Wojciech. On contact sub-pseudo-Riemannian isometries. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1751-1765. doi : 10.1051/cocv/2016072. http://archive.numdam.org/articles/10.1051/cocv/2016072/

A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321–356. | DOI | MR | Zbl

A. Agrachev, El.-H. Chakir, El.-A. and J.P. Gauthier, Sub-Riemannian metrics on R 3 . In vol. 25 of Canadian Mathematical Society Conference Proceedings (1998). | MR | Zbl

A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups. J. Dynam. Control Syst. 18 (2012) 21–44. | DOI | MR | Zbl

M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. In vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 79–323. | MR | Zbl

M. Grochowski, The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics. ESAIM: COCV 18 (2012) 1150–1177. | Numdam | MR | Zbl

M. Grochowski, Remarks on global sub-Lorentzian geometry. Anal. Math. Phys. 3 (2013) 295–309. | DOI | MR | Zbl

M. Grochowski and W. Kryński, Invariants of Contact sub-pseudo-Riemannian Structures and Einstein-Weyl Geometry. Radon Ser. Comput. Appl. Math. 18 (2016). | MR | Zbl

M. Grochowski and B. Warhurst, Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds. SIGMA 11 (2015) 031. | MR | Zbl

E. Grong and A. Vasilev, Sub-Riemannian and sub-Lorentzian geometry on SU(1,1) and on its universal cover. J. Geom. Mech. 3 (2011) 225–260. | DOI | MR | Zbl

S. Kobayashi, Transformation groups in differential geometry. Springer-Verlag, New York, Heidelberg (1972). | MR | Zbl

A. Korolko and I. Markina, Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation. Complex Anal. Oper. Theory 4 (2010) 589–618. | DOI | MR | Zbl

B. Kruglikov, Finite-dimensionality in Tanaka theory. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 75–90. | DOI | Numdam | MR | Zbl

B. Kruglikov, Symmetries of filtered structures via filtered Lie equations. J. Geom. Phys. 85 (2014) 164–170. | DOI | MR | Zbl

P. Lancaster and L. Rodman, Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence. Linear Algebra Appl. 406 (2005) 1–76. | DOI | MR | Zbl

R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. In vol. 91 of Mathematical Surveys and Monographs. AMS (2006). | MR | Zbl

N. Tanaka, On differential systems, graded Lie algebras and pseudogroups. J. Math. Kyoto Univ. 10 (1970) 1–82 | MR | Zbl

R. Thompson, Pencils of Complex and Real Symmetric and Skew Matrices. Linear Algebra Appl. 147 (1991) 323–371. | DOI | MR | Zbl

Cité par Sources :