We study isometries in contact sub-pseudo-Riemannian geometry. In particular we give an upper bound on the dimension of the isometry group of a general sub-pseudo-Riemannian manifold and prove that the maximal dimension is attained for the left invariant structures on the Heisenberg group.
Accepté le :
DOI : 10.1051/cocv/2016072
Mots-clés : Contact structure, sub-Riemannian geometry, sub-Lorentzian geometry, Heisenberg group, isometry group, control-affine systems
@article{COCV_2017__23_4_1751_0, author = {Grochowski, Marek and Kry\'nski, Wojciech}, title = {On contact {sub-pseudo-Riemannian} isometries}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1751--1765}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016072}, mrnumber = {3716939}, zbl = {1379.53044}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016072/} }
TY - JOUR AU - Grochowski, Marek AU - Kryński, Wojciech TI - On contact sub-pseudo-Riemannian isometries JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1751 EP - 1765 VL - 23 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016072/ DO - 10.1051/cocv/2016072 LA - en ID - COCV_2017__23_4_1751_0 ER -
%0 Journal Article %A Grochowski, Marek %A Kryński, Wojciech %T On contact sub-pseudo-Riemannian isometries %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1751-1765 %V 23 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016072/ %R 10.1051/cocv/2016072 %G en %F COCV_2017__23_4_1751_0
Grochowski, Marek; Kryński, Wojciech. On contact sub-pseudo-Riemannian isometries. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1751-1765. doi : 10.1051/cocv/2016072. http://archive.numdam.org/articles/10.1051/cocv/2016072/
Exponential mappings for contact sub-Riemannian structures. J. Dynam. Control Syst. 2 (1996) 321–356. | DOI | MR | Zbl
,A. Agrachev, El.-H. Chakir, El.-A. and J.P. Gauthier, Sub-Riemannian metrics on . In vol. 25 of Canadian Mathematical Society Conference Proceedings (1998). | MR | Zbl
Sub-Riemannian structures on 3D Lie groups. J. Dynam. Control Syst. 18 (2012) 21–44. | DOI | MR | Zbl
and ,M. Gromov, Carnot-Carathéodory spaces seen from within. Sub-Riemannian geometry. In vol. 144 of Progr. Math. Birkhäuser, Basel (1996) 79–323. | MR | Zbl
The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics. ESAIM: COCV 18 (2012) 1150–1177. | Numdam | MR | Zbl
,Remarks on global sub-Lorentzian geometry. Anal. Math. Phys. 3 (2013) 295–309. | DOI | MR | Zbl
,Invariants of Contact sub-pseudo-Riemannian Structures and Einstein-Weyl Geometry. Radon Ser. Comput. Appl. Math. 18 (2016). | MR | Zbl
and ,Invariants and Infinitesimal Transformations for Contact Sub-Lorentzian Structures on 3-Dimensional Manifolds. SIGMA 11 (2015) 031. | MR | Zbl
and ,Sub-Riemannian and sub-Lorentzian geometry on and on its universal cover. J. Geom. Mech. 3 (2011) 225–260. | DOI | MR | Zbl
and ,S. Kobayashi, Transformation groups in differential geometry. Springer-Verlag, New York, Heidelberg (1972). | MR | Zbl
Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation. Complex Anal. Oper. Theory 4 (2010) 589–618. | DOI | MR | Zbl
and ,Finite-dimensionality in Tanaka theory. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 75–90. | DOI | Numdam | MR | Zbl
,Symmetries of filtered structures via filtered Lie equations. J. Geom. Phys. 85 (2014) 164–170. | DOI | MR | Zbl
,Canonical forms for symmetric/skew-symmetric real matrix pairs under strict equivalence and congruence. Linear Algebra Appl. 406 (2005) 1–76. | DOI | MR | Zbl
and ,R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. In vol. 91 of Mathematical Surveys and Monographs. AMS (2006). | MR | Zbl
On differential systems, graded Lie algebras and pseudogroups. J. Math. Kyoto Univ. 10 (1970) 1–82 | MR | Zbl
,Pencils of Complex and Real Symmetric and Skew Matrices. Linear Algebra Appl. 147 (1991) 323–371. | DOI | MR | Zbl
,Cité par Sources :