Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 105-127.

We investigate existence and uniqueness of solutions to a class of fractional parabolic equations satisfying prescribed point-wise conditions at infinity (in space), which can be time-dependent. Moreover, we study the asymptotic behavior of such solutions. We also consider solutions of elliptic equations satisfying appropriate conditions at infinity.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016077
Classification : 35R11, 35K67, 35J75
Mots-clés : Nonlocal operators, evolution equations, sub- supersolutions
Punzo, Fabio 1 ; Valdinoci, Enrico 2

1 Dipartimento di Matematica e Informatica, Università della Calabria, via Pietro Bucci, cubo 31b, 87036 Rende (CS), Italy.
2 Weierstraß Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, 10117 Berlin, Germany; Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milano, Italy; Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes”, Consiglio Nazionale delle Ricerche, Via Ferrata 1, 27100 Pavia, Italy, and School of Mathematics and Statistics, University of Melbourne, 813 Swanston Street, Parkville VIC 3010, Australia.
@article{COCV_2018__24_1_105_0,
     author = {Punzo, Fabio and Valdinoci, Enrico},
     title = {Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {105--127},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {1},
     year = {2018},
     doi = {10.1051/cocv/2016077},
     mrnumber = {3764136},
     zbl = {1395.35197},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016077/}
}
TY  - JOUR
AU  - Punzo, Fabio
AU  - Valdinoci, Enrico
TI  - Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 105
EP  - 127
VL  - 24
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016077/
DO  - 10.1051/cocv/2016077
LA  - en
ID  - COCV_2018__24_1_105_0
ER  - 
%0 Journal Article
%A Punzo, Fabio
%A Valdinoci, Enrico
%T Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 105-127
%V 24
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016077/
%R 10.1051/cocv/2016077
%G en
%F COCV_2018__24_1_105_0
Punzo, Fabio; Valdinoci, Enrico. Prescribed conditions at infinity for fractional parabolic and elliptic equations with unbounded coefficients. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 105-127. doi : 10.1051/cocv/2016077. http://archive.numdam.org/articles/10.1051/cocv/2016077/

H. Abels and M. Kassmann, The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels. Osaka J. Math. 46 (2009) 661–683. | MR | Zbl

D.G. Aronson and P. Besala, Uniqueness of solutions to the Cauchy problem for parabolic equations. J. Math. Anal. Appl. 13 (1966) 516–526. | DOI | MR | Zbl

G. Barles, E. Chasseigne and C. Imbert, On the Dirichlet Problem for Second-Order Elliptic Integro-Differential Equations. Indiana Univ. Math. J. 57 (2008) 213–146. | DOI | MR | Zbl

G. Barles, E. Chasseigne and C. Imbert, Holder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. 13 (2010) 1–26. | MR | Zbl

R.F. Bass, Stochastic Processes. Cambridge Series in Statistical and Probabilistic Mathematics (2011) | MR | Zbl

R.M. Blumenthal and R.K. Getoor, Some theorems on stable processes. Trans. Amer. Math. Soc. 95 (1960) 263–273. | DOI | MR | Zbl

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012) 521–573. | DOI | MR | Zbl

S. D. Eidelman, S. Kamin and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity. Asympt. Anal. 22 (2000) 349–358. | MR | Zbl

R.K. Getoor, First passage times for symmetric stable processes in space. Trans. Amer. Math. Soc. 101 (1961) 75–90. | DOI | MR | Zbl

A. Grigoryan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (1999) 135–249. | DOI | MR | Zbl

G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous filtration equation. Ann. I. Henri Poincaré-AN 31 (2014) 413–428 | DOI | Numdam | MR | Zbl

A. M. Il’In, A.S. Kalashnikov and O.A. Oleinik, Linear equations of the second order of parabolic type. Russian Math. Surveys 17 (1962) 1–144. | DOI

S. Kamin, M.A. Pozio and A. Tesei, Admissible conditions for parabolic equations degenerating at infinity. St. Petersburg Math. J. 19 (2008) 239–251. | DOI | MR | Zbl

S. Kamin and F. Punzo, Dirichlet conditions at infinity for parabolic and elliptic equations. Nonl. Anal. TMA 138 (2016) 156–175. | DOI | MR | Zbl

S. Kamin and F. Punzo, Prescribed conditions at infinity for parabolic equations. Commun. Cont. Math. 17 (2015). | DOI | MR | Zbl

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Holder classes and the uniqueness of the martingale problem. Potential Anal. 40 (2014) 539–563. | DOI | MR | Zbl

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Diff. Eq. 256 (2014) 1581–1626. | DOI | MR | Zbl

Y. Pinchover, On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z. 223 (1996) 569–586. | DOI | MR | Zbl

F. Punzo and A. Tesei, Uniqueness of solutions to degenerate elliptic problems with unbounded coefficients. Ann. Inst. Henri Poincaré (C) Non Linear Analysis 26 (2009) 2001–2024. | DOI | Numdam | MR | Zbl

F. Punzo and E. Valdinoci, Uniqueness in weighted Lebesgue spaces for a class of fractional parabolic and elliptic equations. J. Diff. Equ. 258 (2015) 555–587. | DOI | MR | Zbl

D.H. Sattinger, Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems. Indiana Univ. Math. J. 21 (1972) 979–1000. | DOI | MR | Zbl

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator (Ph.D. Thesis). The University of Texas at Austin (2005). | MR

L. Schwartz, Théorie des distributions, Hermann, Paris (1966). | MR | Zbl

A.N. Tihonov, Théorèmes d’unicité pour l’équation de la chaleur. Mat. Sb. 42 (1935) 199–215. | Zbl

Cité par Sources :