Stabilization of the nonlinear Korteweg-de Vries (KdV) equation on a bounded interval by model predictive control (MPC) is investigated. This MPC strategy does not need any terminal cost or terminal constraint to guarantee the stability. The semi-global stabilizability is the key condition. Based on this condition, the suboptimality and exponential stability of the model predictive control are investigated. Finally, numerical experiment is presented which validates the theoretical results.
Accepté le :
DOI : 10.1051/cocv/2017001
Mots-clés : Receding horizon control, model predictive control, asymptotic stability, infinite-dimensional systems
@article{COCV_2018__24_1_237_0, author = {Azmi, Behzad and Boulanger, Anne-C\'eline and Kunisch, Karl}, title = {On the semi-global stabilizability of the {Korteweg-de} {Vries} {Equation} via model predictive control}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {237--263}, publisher = {EDP-Sciences}, volume = {24}, number = {1}, year = {2018}, doi = {10.1051/cocv/2017001}, zbl = {1396.93102}, mrnumber = {3843184}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017001/} }
TY - JOUR AU - Azmi, Behzad AU - Boulanger, Anne-Céline AU - Kunisch, Karl TI - On the semi-global stabilizability of the Korteweg-de Vries Equation via model predictive control JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 237 EP - 263 VL - 24 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017001/ DO - 10.1051/cocv/2017001 LA - en ID - COCV_2018__24_1_237_0 ER -
%0 Journal Article %A Azmi, Behzad %A Boulanger, Anne-Céline %A Kunisch, Karl %T On the semi-global stabilizability of the Korteweg-de Vries Equation via model predictive control %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 237-263 %V 24 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017001/ %R 10.1051/cocv/2017001 %G en %F COCV_2018__24_1_237_0
Azmi, Behzad; Boulanger, Anne-Céline; Kunisch, Karl. On the semi-global stabilizability of the Korteweg-de Vries Equation via model predictive control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 1, pp. 237-263. doi : 10.1051/cocv/2017001. http://archive.numdam.org/articles/10.1051/cocv/2017001/
[1] Nonlinear predictive control and moving horizon estimationan introductory overview, in Advances in control. Springer (1999) 391–449. | DOI
, , , and ,[2] Nonlinear model predictive control, Vol. 26. Birkhäuser Basel (2000). | DOI | MR | Zbl
and ,[3] A superconvergent finite element method for the Korteweg-de Vries equation. Math. Comput. 38 (1982) 23–36. | DOI | MR | Zbl
and ,[4] On the Stabilizability of the Burgers Equation by Receding Horizon Control. SIAM J. Control Optim. 54 (2016) 1378–1405. | DOI | MR | Zbl
and ,[5] Strongly continuous semigroups, weak solutions, and the variation of constants formula. Proc. Amer. Math. Soc. 63 (1977) 370–373. | MR | Zbl
,[6] Two-point step size gradient methods. IMA J. Numer. Anal. 8 (1988) 141–148. | DOI | MR | Zbl
and ,[7] Representation and control of infinite dimensional systems, Springer Science and Business Media (2007). | DOI | MR | Zbl
, , and ,[8] Fully discrete Galerkin methods for the Korteweg-de Vries equation. Comput. Math. Appl. 12 (1986) 859–884. | DOI | MR | Zbl
, and ,[9] A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain. Commun. Partial Differ. Equ. 28 (2003) 1391–1436. | DOI | MR | Zbl
, and ,[10] A non-homogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain II. J. Differ. Equ. 247 (2009) 2558–2596. | DOI | MR | Zbl
, and ,[11] Sparse optimal control of the Korteweg-de Vries-Burgers equation on a bounded domain. SIAM J. Control Optim. 55 (2017) 3673–3706. | DOI | MR | Zbl
and ,[12] Essai sur la théories des eaux courantes, Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut Nationale de France 23 (1877). | JFM
, , Chebyshev and Fourier spectral methods, Courier Corporation (2001). |[14] Functional analysis, Sobolev spaces and partial differential equations. Springer Science and Business Media (2010). | MR | Zbl
,[15] Internal controllability of the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 21 (2015) 1076–1107. | Numdam | MR | Zbl
, and ,[16] Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optimiz. 46 (2007) 877–899. | DOI | MR | Zbl
,[17] A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34 (1998) 1205–1217. | MR | Zbl
and ,[18] An initial-boundary value problem for the Korteweg-de Vries equation posed on a finite interval. Adv. Differ. Equ. 6 (2001) 1463–1492. | MR | Zbl
, ,[19] On the Non-Dimensionalisation, Scaling and Resulting Interpretation of the Classical Governing Equations for Water Waves. J. Nonlin. Math. Phys. 15 (2008) 58–73. | DOI | MR | Zbl
and ,[20] Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. (JEMS) 6 (2004) 367–398. | DOI | MR | Zbl
and ,[21] Adaptive two-point stepsize gradient algorithm. Numer. Algorithms 27 (2001) 377–385. | DOI | MR | Zbl
and ,[22] Numerical methods for the solution of the third-and fifth-order dispersive Korteweg-de Vries equations. J. Comput. Appl. Math. 58 (1995) 307–336. | DOI | MR | Zbl
, , and ,[23] Finite volume methods for unidirectional dispersive wave models. Inter. J. Numer. Methods Fluids 71 (2013) 717–736. | DOI | MR | Zbl
, and ,[24] Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation. Differ. Integral Equ. 20 (2007) 601–642. | MR | Zbl
et al.,[25] Initial-boundary value problems for quasilinear dispersive equations posed on a bounded interval. Electron. J. Differ. Equ. 2010 (2010) 1–20. | MR | Zbl
and ,[26] Controllability of the Korteweg-de Vries equation from the right dirichlet boundary condition. Syst. Control Lett. 59 (2010) 390–395. | DOI | MR | Zbl
and ,[27] Model predictive control: for want of a local control Lyapunov function, all is not lost. Automatic Control, IEEE Trans. 50 (2005) 546–558. | DOI | MR | Zbl
, , and ,[28] Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optimiz. 48 (2009) 1206–1228. | DOI | MR | Zbl
,[29] Nonlinear Model Predictive Control. Springer London (2011). | DOI | MR | Zbl
and ,[30] On the infinite horizon performance of receding horizon controllers. Automatic Control, IEEE Transactions 53 (2008) 2100–2111. | DOI | MR | Zbl
and ,[31] The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31 (2006) 1151–1190. | DOI | MR | Zbl
,[32] Receding horizon optimal control for infinite dimensional systems. ESAIM: COCV 8 (2002) 741–760. | Numdam | MR | Zbl
and ,[33] Receding horizon control with incomplete observations. SIAM J. Control Optimiz. 45 (2006) 207–225. | DOI | MR | Zbl
and ,[34] On the stability of receding horizon control with a general terminal cost. Automatic Control, IEEE Trans. 50 (2005) 674–678. | DOI | MR | Zbl
and ,[35] Unconstrained receding-horizon control of nonlinear systems. Automatic Control, IEEE Trans. 46 (2001) 776–783. | DOI | MR | Zbl
, and ,[36] Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation. Acta Appl. Math. 118 (2012) 25–47. | DOI | MR | Zbl
and ,[37] On the change of form of long waves advancing in a rectangular channel, and a new type of long stationary wave. Phil. Mag 39 (1895) 422–443. | DOI | JFM | MR
and ,[38] Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine J. Sci. 39 1895 422–443. | DOI | JFM | MR
and[39] Nonhomogeneous boundary value problems for the Korteweg-de Vries equation on a bounded domain. J. Syst. Sci. Complexity 23 (2010) 499–526. | DOI | MR | Zbl
and ,[40] On the exponential decay of the critical generalized Korteweg-de Vries equation with localized damping.Proc. Amer. Math. Soc. 135 (2007) 1515–1522. | DOI | MR | Zbl
and ,[41] A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations. SIAM J. Numer. Anal. 38 (2000) 1425–1438. | DOI | MR | Zbl
and ,[42] Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation. SIAM J. Numer. Anal. 39 (2001) 1380–1394. | DOI | MR | Zbl
and ,[43] On the uniform decay for the Korteweg-de Vries equation with weak damping. Math. Methods Appl. Sci. 30 (2007) 1419–1435. | DOI | MR | Zbl
, and ,[44] Constrained model predictive control: Stability and optimality. Automatica 36 (2000) 789–814. | DOI | MR | Zbl
, , and ,[45] Stabilization of the Korteweg-de Vries equation with localized damping. Quarterly Appl. Math. 60 (2002) 111–129. | DOI | MR | Zbl
, and ,[46] Unique continuation and decay for the Korteweg-de Vries equation with localized damping. ESAIM: COCV 11 (2005) 473–486. | Numdam | MR | Zbl
,[47] Semigroups of linear operators and applications to partial differential equations, Vol. 44. Springer Science and Business Media (2012). | MR | Zbl
,[48] Unconstrained model predictive control and suboptimality estimates for nonlinear continuous-time systems. Automatica 48 (2012) 1812–1817. | DOI | MR | Zbl
and ,[49] Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | MR | Zbl
,[50] Control of the surface of a fluid by a wavemaker. ESAIM: COCV 10 (2004) 346–380. | Numdam | MR | Zbl
,[51] Global stabilization of the generalized Korteweg-de Vries equation posed on a finite domain. SIAM J. Control Optimiz. 45 (2006) 927–956. | DOI | MR | Zbl
and ,[52] Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complexity 22 (2009) 647–682. | DOI | MR | Zbl
and ,[53] A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KDV equation. SIAM J. Numer. Anal. 41 (2003) 1595–1619. | DOI | MR | Zbl
,[54] Compact sets in the space Lp(0, T; B). Ann. Mat. Pura Appl. 146 (1987) 65–96. | DOI | MR | Zbl
,[55] A conservative finite element method for the Korteweg-de Vries equation. Math. Comput. (1980) 23–43. | DOI | MR | Zbl
,[56] A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769–791. | DOI | MR | Zbl
and ,[57] Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965) 240–243. | DOI | Zbl
and ,[58] Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optimiz. 37 (1999) 543–565. | DOI | MR | Zbl
,Cité par Sources :