Linear quadratic mean field game with control input constraint
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 901-919.

In this paper, we study a class of linear-quadratic (LQ) mean-field games in which the individual control process is constrained in a closed convex subset Γ of full space m . The decentralized strategies and consistency condition are represented by a class of mean-field forward-backward stochastic differential equation (MF-FBSDE) with projection operators on Γ . The wellposedness of consistency condition system is obtained using the monotonicity condition method. The related -Nash equilibrium property is also verified.

DOI : 10.1051/cocv/2017038
Classification : 60H10, 60H30, 91A10, 91A25, 93E20
Mots-clés : ϵ-Nash equilibrium, mean-field forward-backward stochastic differential equation (MF-FBSDE), linear-quadratic constrained control, projection, monotonic condition
Hu, Ying 1 ; Huang, Jianhui 1 ; Li, Xun 1

1
@article{COCV_2018__24_2_901_0,
     author = {Hu, Ying and Huang, Jianhui and Li, Xun},
     title = {Linear quadratic mean field game with control input constraint},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {901--919},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017038},
     mrnumber = {3816421},
     zbl = {1432.49048},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017038/}
}
TY  - JOUR
AU  - Hu, Ying
AU  - Huang, Jianhui
AU  - Li, Xun
TI  - Linear quadratic mean field game with control input constraint
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 901
EP  - 919
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017038/
DO  - 10.1051/cocv/2017038
LA  - en
ID  - COCV_2018__24_2_901_0
ER  - 
%0 Journal Article
%A Hu, Ying
%A Huang, Jianhui
%A Li, Xun
%T Linear quadratic mean field game with control input constraint
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 901-919
%V 24
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017038/
%R 10.1051/cocv/2017038
%G en
%F COCV_2018__24_2_901_0
Hu, Ying; Huang, Jianhui; Li, Xun. Linear quadratic mean field game with control input constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 2, pp. 901-919. doi : 10.1051/cocv/2017038. http://archive.numdam.org/articles/10.1051/cocv/2017038/

[1] A.V. Balakrishnan, Appl. Funct. Anal. Springer–Verlag, New York (1976) | MR

[2] A. Bensoussan, J. Frehse and S. Yam, Mean Field Games and Mean Field Type Control Theory. Springer, New York (2013) | DOI | MR | Zbl

[3] H. Brezis, Functional Analysis, Sobolev Spaces Partial Differ. Equ. Springer, New York (2011) | MR | Zbl

[4] P. Cardaliaguet, Notes on Mean Field Games (2012)

[5] R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734 | DOI | MR | Zbl

[6] R. Carmona, J.P. Fouque and L.H. Sun, Mean field games and systemic risk. Commun. Math. Sci. 13 (2015) 911–933 | DOI | MR | Zbl

[7] G.E. Espinosa and N. Touzi, Optimal investment under relative performance concerns. Math. Finance 25 (2015) 221–257 | DOI | MR | Zbl

[8] O. Guéant, J.M. Lasry and P.L. Lions, Mean field games and applications. Paris-Princeton Lectures on Mathematical Finance 2010 Lect. Notes Math. 2011 205–266 | MR | Zbl

[9] Y. Hu and X.Y. Zhou, Constrained stochastic LQ control with random coefficients, and application to portfolio selection. SIAM J. Control Optim. 44 (2005) 444–466 | DOI | MR | Zbl

[10] Y. Hu and S. Peng, Solutions of forward-backward stochastic differential equations. Prob. Theory Related Fields 103 (1995) 273–283 | DOI | MR | Zbl

[11] M. Huang, Large population LQG games involving a major player: The Nash certainty equivalence principle. SIAM J. Control Optim. 48 (2010) 3318–3353 | DOI | MR | Zbl

[12] M. Huang, P.E. Caines and R.P. Malhamé, Distributed multi-agent decision-making with partial observations: Asymptotic Nash equilibria. Proceedings of the 17th Int. Symp. Math. Theory Networks Syst. Kyoto, Japan (2006)

[13] M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with non-uniform agents: Individual-mass behavior and decentralized ε-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571 | DOI | MR | Zbl

[14] M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Infor. Syst. 6 (2006) 221–251 | DOI | MR | Zbl

[15] J.M. Lasry and P.L. Lions, Mean field games. Jpn J. Math. 2 (2007) 229–260 | DOI | MR | Zbl

[16] S.L. Nguyen and M. Huang, Linear-quadratic-Gaussian mixed games with continuum-parameterized minor players. SIAM J. Control Optim. 50 (2012) 2907–2937 | DOI | MR | Zbl

[17] S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 (1999) 825–843 | DOI | MR | Zbl

[18] H. Tembine, Q. Zhu and T. Basar, Risk-sensitive mean-field games. IEEE Trans. Automat. Control 59 (2014) 835–850 | DOI | MR | Zbl

[19] B. Wang and J. Zhang, Mean field games for large-population multiagent systems with Markov jump parameters. SIAM J. Control Optim. 50 (2012) 2308–2334 | DOI | MR | Zbl

[20] J. Yong, Linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51 (2013) 2809–2838 | DOI | MR | Zbl

[21] J. Yong and X.Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations. Springer–Verlag, New York (1999) | DOI | MR | Zbl

Cité par Sources :